Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists identify drug to treat opioid addiction

19.02.2009
Scientists at Stanford University School of Medicine have discovered that a commonly available non-addictive drug can prevent symptoms of withdrawal from opioids with little likelihood of serious side effects. The drug, ondansetron, which is already approved to treat nausea and vomiting, appears to avoid some of the problems that accompany existing treatments for addiction to these powerful painkillers, the scientists said.

Opioids encompass a diverse array of prescription and illegal drugs, including codeine, morphine and heroin. In 2007, about 12.5 million Americans aged 12 and older used prescription pain medications for non-medical purposes, according to the National Survey on Drug Use and Health, administered by the federal government's Substance Abuse and Mental Health Services Administration.

"Opioid abuse is rising at a faster rate than any other type of illicit drug use, yet only about a quarter of those dependent on opioids seek treatment," said Larry F. Chu, MD, assistant professor of anesthesia at the School of Medicine and lead author of the study that will be published online Feb. 17 in the Journal of Pharmacogenetics and Genomics. "One barrier to treatment is that when you abruptly stop taking the drugs, there is a constellation of symptoms associated with withdrawal." Chu described opioid withdrawal as a "bad flu," characterized by agitation, insomnia, diarrhea, nausea and vomiting.

Current methods of treatment are not completely effective, according to Chu. One drug used for withdrawal, clonidine, requires close medical supervision as it can cause severe side effects, while two others, methadone and buprenorphine, don't provide a satisfactory solution because they act through the same mechanism as the abused drugs. "It's like replacing one drug with another," said co-investigator Gary Peltz, MD, PhD, professor of anesthesia.

"What we need is a magic bullet," said Chu. "Something that treats the symptoms of withdrawal, does not lead to addiction and can be taken at home."

The researchers' investigation led them to the drug ondansetron, after they determined that it would block certain receptors involved in withdrawal symptoms.

The scientists were able to make this connection thanks to their having a good animal model for opioid dependence. Mice given morphine for several days develop the mouse equivalent of addiction. Researchers then stop providing morphine to trigger withdrawal symptoms. Strikingly, these mice, when placed into a plastic cylinder, will start to jump into the air. One can measure how dependent these mice are by counting how many times they jump. Like humans, dependent mice also become very sensitive to pain when they stop receiving morphine.

But the responses vary among the laboratory animals. There are "different flavors of mice," explained Peltz. "Some strains of mice are more likely to become dependent on opioids." By comparing the withdrawal symptoms and genomes of these different strains, it's possible to figure out which genes play a major role in addiction.

To accomplish this feat, Peltz and his colleagues used a powerful computational "haplotype-based" genetic mapping method that he had recently developed, which can sample a large portion of the genome within just a few hours. This method pinpoints genes responsible for the variation in withdrawal symptoms across these strains of mice.

The analysis revealed an unambiguous result: One particular gene determined the severity of withdrawal. That gene codes for the 5-HT3 receptor, a protein that responds to the brain-signaling chemical serotonin.

To confirm these results, the researchers injected the dependent mice with ondansetron, a drug that specifically blocks 5-HT3 receptors. The drug significantly reduced the jumping behavior of mice as well as pain sensitivity — two signs of addiction.

The scientists were able to jump from "from mouse to man" by sheer luck: It turns out that ondansetron is already on the market for the treatment of pain and nausea. As a result, they were able to immediately use this drug, approved by the Food and Drug Administration, in eight healthy, non-opioid-dependent humans. In one session, they received only a single large dose of morphine, and in another session that was separated by at least week, they took ondansetron in combination with morphine. They were then given questionnaires to assess their withdrawal symptoms.

Similar to mice, humans treated with ondansetron before or while receiving morphine showed a significant reduction in withdrawal signs compared with when they received morphine but not ondansetron. "A major accomplishment of this study was to take lab findings and translate them to humans," said principal investigator J. David Clark, MD, PhD, professor of anesthesia at Stanford University School of Medicine and the Palo Alto Veterans Affairs Health Care System.

Chu plans on conducting a clinical study to confirm the effectiveness of another ondansetron-like drug in treating opioid withdrawal symptoms in a larger group of healthy humans. And the research team will continue to test the effectiveness of ondansetron in treating opioid addiction.

The scientists warned that ondansetron will not by itself resolve the problems that arise with continued use of these painkillers. Addiction is a long-term, complex process, involving both physical and psychological factors that lead to compulsive drug use. "This is not a cure for addiction," said Clark. "It's naïve to think that any one receptor is a panacea for treatment. Treating the withdrawal component is only one way of alleviating the suffering. With luck and determination, we can identify additional targets and put together a comprehensive treatment program."

Collaborators on this study included De-Yong Liang, PhD, the study's co-lead author, previously a research associate in the Department of Anesthesia and currently a research associate at the Palo Alto Institute for Research and Education; Xiangqi Li, MD, a life science research assistant in the department; Nicole D'Arcy, a medical student: Peyman Sahbaie, MD, a research associate at the institute; and Guochun Liao, PhD, of the pharmaceutical company Hoffman-La Roche. This work was supported by grants to Clark from the National Institutes of Health and the National Institute on Drug Abuse, and grants to Chu from the NIH and the National Institute of General Medical Sciences.

The researchers are working with the Stanford University Office of Technology Licensing to seek a patent for the use of ondansetron and related medicines in the treatment of drug addiction.

Rosanne Spector | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>