Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers uncover link between 2 aging pathways in mice

09.01.2009
Two previously identified pathways associated with aging in mice are connected, say researchers at the Stanford University School of Medicine.

The finding reinforces what researchers have recently begun to suspect: that the age-related degeneration of tissues, organs and, yes, even facial skin with which we all struggle is an active, deliberate process rather than a gradual failure of tired cells.

Derailing or slowing this molecular betrayal, although still far in the future, may enable us to one day tack years onto our lives — or at least delay the appearance of that next wrinkle.

"There is a genetic process that has to be on, and enforced, in order for aging to happen," said Howard Chang, MD, PhD, associate professor of dermatology at the school and a member of Stanford's Cancer Center. "It's possible that those rare individuals who live beyond 100 years have a less-efficient version of this master pathway, just as children with progeria — a genetic aging disease — may have components of this pathway that are more active."

The study, which will be published in the Jan. 9 issue of Cell, grew out of a three-year collaboration between Chang and Katrin Chua, MD, PhD, assistant professor of endocrinology, gerontology and metabolism at Stanford and member of the Stanford Cancer Center and the Veterans Affairs Palo Alto Health Care System. Chang and Chua are co-senior authors of the research.

The researchers focused their investigation on two seemingly separate pathways linked to aging. One involved a molecule known as SIRT6 — a member of the sirtuin family of proteins that modulate life span in organisms such as yeast and worms — that Chua's laboratory has been studying for several years. She and her lab members have previously shown that SIRT6 is involved in genomic stability and the protection of chromosomal ends called telomeres. Telomeres, which grow shorter with each cell division, are thought to function as a kind of internal molecular clock associated with aging. Furthermore, mice lacking SIRT6 are born normally but die within a few weeks because of a rapid, multi-organ degeneration that somewhat resembles premature aging.

"Sirtuin family members have been implicated in aging and age-related diseases," said Chua, "but very little was known about how SIRT6 worked on a molecular level until recently. Our new study reveals that SIRT6, in addition to its role in genomic stability and telomere protection, also regulates gene expression."

The other pathway involved a more well-known protein called NF-kappa B, or NF-kB, that binds to and regulates the expression of many genes, including those involved in aging. The expression of many of these genes increases with age, and blocking the activity of NF-kB in the skin cells of elderly mice causes them to look and act like younger cells.

The researchers wondered if NF-kB and SIRT6 somehow work together to help cells age appropriately. They found that, in human and mouse cells, SIRT6 binds to a subunit of NF-kB and modifies components of a nearby DNA packaging center, called histones. This modification makes it more difficult for NF-kB to trigger the expression of the downstream gene — perhaps by causing the DNA to twist in such a way to boot off the protein.

"It seems that an important job of SIRT6 is to restrain NF-kB and limit the expression of genes associated with aging," said Chang. "We've been interested in the activity of regulatory genes such as NF-kB during aging for several years now, and we were quite happy to find this very clear biochemical connection between these two pathways."

Young mice lacking the SIRT6 protein displayed elevated levels of NF-kB-dependent genes involved in immune response, cell signaling and metabolism — all potentially involved in the uniformly fatal aging-like condition that killed them within four weeks of birth. Tamping down the expression of the gene for NF-kB's SIRT-binding subunit allowed some of the mice to escape this fate.

"Mice lacking SIRT6 seem to hit some kind of a wall at around four weeks of age," said Chua, "when their blood sugar drops to a level barely compatible with life. Reducing NF-kB activity somehow allows the mice to get over this critical period and to live much longer. These mice provide a great new tool to study the effect of SIRT6-deficiency in much older animals than was possible before."

The researchers are now working to understand how NF-kB knows when and to what extent during an organism's lifetime to initiate the degenerative process and what role SIRT6 may play.

"It's a very provocative question," said Chang. "We've tied together two previously separate pathways in aging. Now we'd like to better understand what regulates that pathway."

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>