Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers discover the African cichlid's noisy courtship ritual

14.06.2012
Male fish attract potential mates with grunts – and females' hearing improves as they get ready to mate.

African cichlids enjoy an alien, exotic courtship routine. A dominant male attracts choice females to his territory by dancing seductively.


A dominant male cichlid. Stanford researchers say the sounds the male cichlid makes may help explain how similar-looking cichlid species avoid interbreeding.

If the female is sufficiently impressed, she lays her eggs and immediately collects them in her mouth, where the male fertilizes them. And, in some species, every once in a while, a lower-ranking male will dart into the scene and try to fertilize a few eggs before the dominant male knows what's happened.

At least that's what we thought was going on. But one day, while watching this nostalgic display in the lab, Stanford postdoctoral biology researcher Karen Maruska noticed something unusual. A dominant male was courting a female in one corner of the tank, at the entrance to a terra cotta pot he had claimed as his territory.

"Then, at the last minute, a subordinate male made a beeline for them from the corner of the tank behind the pot, so he could spawn at just the right time," Maruska said. "And I thought: there's no way the subordinate saw" that opportunity. In fact, he didn't see it. He heard it.

Astatotilapia burtoni's predilection for waggling its tail and quivering its body before mating is well documented. But what Maruska, undergraduate researcher Uyhun Ung and Stanford biology Professor Russ Fernald would later write in a paper published last week in PloS ONE was that males also vocalize during courtship. Not only are females responsive to these calls, but their ability to hear them improves with their sexual receptiveness. This additional courtship component may provide crucial signals used for mate choice decisions and help explain how similar-looking cichlid species avoid accidental interbreeding.

Listening fish

Using underwater microphones called hydrophones, the researchers found that males would make low-frequency sounds when confronted with receptive females. And females preferred males associated with playbacks of these courtship sounds over males that were associated with no sound, or a neutral noise.

But not all hearing thresholds were created equal. Females that were sexually receptive – and had high circulating levels of sex hormones – were dramatically more sensitive to the low frequencies contained in the courtship sounds than females that had already spawned and were in the mouth-brooding parental care phase of their cycle. This kind of hormone-dependent hearing has been observed in other animals, and is a reliable indicator of the importance of sounds in courtship displays.

Subordinate males were also subtly more sensitive to certain frequencies than dominant males. Although the reasons for this change are less clear, Maruska suggests the subordinate males may "use the frequency of the sound to determine which males to fight with and attempt to take over their territory." Because the frequency of the courtship sound is related to body size, subordinate males may listen to these courtship sounds to identify the smallest – and most vulnerable – males in their area.

A small pond

The cichlids studied by the Fernald lab are native to Lake Tanganyika in East Africa "where they co-exist with a lot of other cichlid species," said Maruska. "Each species needs to find its niche in the system."

The high level of diversity within the cichlid family is unusual, and difficult to maintain when all the relatives are in the same body of water. Researchers had previously assumed that cichlids, which tend to be brightly colored fish, only used visual cues to distinguish potential mates from out-of-species mistakes. But biologists now believe that visual cues alone can't account for the phenomenon.

Recent field studies by other scientists have shown that cichlid species that live in overlapping areas in the wild produce distinct sounds. The Stanford researchers' discovery that these sounds are an integral component of courtship rituals lends credence to the theory that the vast array of cichlid species may be a consequence of courtship displays that make use of more than one sensory system.

Still, "not a lot is known about fish sounds," said Maruska. There remains a host of unsolved mysteries in the field. "We don't even know the mechanism of sound production in this species yet."
Media Contact

Russell Fernald, Department of Biology: (650) 725-2460, rfernald@stanford.edu

Karen Maruska, Department of Biology: (650) 723-0881 maruska@stanford.edu

Max McClure, Stanford News Service: (650) 725-6737, maxmc@stanford.edu

Max McClure | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>