Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers discover the African cichlid's noisy courtship ritual

14.06.2012
Male fish attract potential mates with grunts – and females' hearing improves as they get ready to mate.

African cichlids enjoy an alien, exotic courtship routine. A dominant male attracts choice females to his territory by dancing seductively.


A dominant male cichlid. Stanford researchers say the sounds the male cichlid makes may help explain how similar-looking cichlid species avoid interbreeding.

If the female is sufficiently impressed, she lays her eggs and immediately collects them in her mouth, where the male fertilizes them. And, in some species, every once in a while, a lower-ranking male will dart into the scene and try to fertilize a few eggs before the dominant male knows what's happened.

At least that's what we thought was going on. But one day, while watching this nostalgic display in the lab, Stanford postdoctoral biology researcher Karen Maruska noticed something unusual. A dominant male was courting a female in one corner of the tank, at the entrance to a terra cotta pot he had claimed as his territory.

"Then, at the last minute, a subordinate male made a beeline for them from the corner of the tank behind the pot, so he could spawn at just the right time," Maruska said. "And I thought: there's no way the subordinate saw" that opportunity. In fact, he didn't see it. He heard it.

Astatotilapia burtoni's predilection for waggling its tail and quivering its body before mating is well documented. But what Maruska, undergraduate researcher Uyhun Ung and Stanford biology Professor Russ Fernald would later write in a paper published last week in PloS ONE was that males also vocalize during courtship. Not only are females responsive to these calls, but their ability to hear them improves with their sexual receptiveness. This additional courtship component may provide crucial signals used for mate choice decisions and help explain how similar-looking cichlid species avoid accidental interbreeding.

Listening fish

Using underwater microphones called hydrophones, the researchers found that males would make low-frequency sounds when confronted with receptive females. And females preferred males associated with playbacks of these courtship sounds over males that were associated with no sound, or a neutral noise.

But not all hearing thresholds were created equal. Females that were sexually receptive – and had high circulating levels of sex hormones – were dramatically more sensitive to the low frequencies contained in the courtship sounds than females that had already spawned and were in the mouth-brooding parental care phase of their cycle. This kind of hormone-dependent hearing has been observed in other animals, and is a reliable indicator of the importance of sounds in courtship displays.

Subordinate males were also subtly more sensitive to certain frequencies than dominant males. Although the reasons for this change are less clear, Maruska suggests the subordinate males may "use the frequency of the sound to determine which males to fight with and attempt to take over their territory." Because the frequency of the courtship sound is related to body size, subordinate males may listen to these courtship sounds to identify the smallest – and most vulnerable – males in their area.

A small pond

The cichlids studied by the Fernald lab are native to Lake Tanganyika in East Africa "where they co-exist with a lot of other cichlid species," said Maruska. "Each species needs to find its niche in the system."

The high level of diversity within the cichlid family is unusual, and difficult to maintain when all the relatives are in the same body of water. Researchers had previously assumed that cichlids, which tend to be brightly colored fish, only used visual cues to distinguish potential mates from out-of-species mistakes. But biologists now believe that visual cues alone can't account for the phenomenon.

Recent field studies by other scientists have shown that cichlid species that live in overlapping areas in the wild produce distinct sounds. The Stanford researchers' discovery that these sounds are an integral component of courtship rituals lends credence to the theory that the vast array of cichlid species may be a consequence of courtship displays that make use of more than one sensory system.

Still, "not a lot is known about fish sounds," said Maruska. There remains a host of unsolved mysteries in the field. "We don't even know the mechanism of sound production in this species yet."
Media Contact

Russell Fernald, Department of Biology: (650) 725-2460, rfernald@stanford.edu

Karen Maruska, Department of Biology: (650) 723-0881 maruska@stanford.edu

Max McClure, Stanford News Service: (650) 725-6737, maxmc@stanford.edu

Max McClure | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>