Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers develop tool for reading the minds of mice

20.02.2013
Stanford scientists have developed a system for observing real-time brain activity in a live mouse. The device could prove useful in studying new treatments for neurodegenerative diseases, such as Alzheimer's.
If you want to read a mouse's mind, it takes some fluorescent protein and a tiny microscope implanted in the rodent's head.

Stanford scientists have demonstrated a technique for observing hundreds of neurons firing in the brain of a live mouse, in real time, and have linked that activity to long-term information storage. The unprecedented work could provide a useful tool for studying new therapies for neurodegenerative diseases such as Alzheimer's.

The researchers first used a gene therapy approach to cause the mouse's neurons to express a green fluorescent protein that was engineered to be sensitive to the presence of calcium ions. When a neuron fires, the cell naturally floods with calcium ions. Calcium stimulates the protein, causing the entire cell to fluoresce bright green.

A tiny microscope implanted just above the mouse's hippocampus – a part of the brain that is critical for spatial and episodic memory – captures the light of roughly 700 neurons. The microscope is connected to a camera chip, which sends a digital version of the image to a computer screen.

The computer then displays near real-time video of the mouse's brain activity as a mouse runs around a small enclosure, which the researchers call an arena.

The neuronal firings look like tiny green fireworks, randomly bursting against a black background, but the scientists have deciphered clear patterns in the chaos.

"We can literally figure out where the mouse is in the arena by looking at these lights," said Mark Schnitzer, an associate professor of biology and of applied physics and the senior author on the paper, recently published in the journal Nature Neuroscience.

When a mouse is scratching at the wall in a certain area of the arena, a specific neuron will fire and flash green. When the mouse scampers to a different area, the light from the first neuron fades and a new cell sparks up.

"The hippocampus is very sensitive to where the animal is in its environment, and different cells respond to different parts of the arena," Schnitzer said. "Imagine walking around your office. Some of the neurons in your hippocampus light up when you're near your desk, and others fire when you're near your chair. This is how your brain makes a representative map of a space."

The group has found that a mouse's neurons fire in the same patterns even when a month has passed between experiments. "The ability to come back and observe the same cells is very important for studying progressive brain diseases," Schnitzer said.

For example, if a particular neuron in a test mouse stops functioning, as a result of normal neuronal death or a neurodegenerative disease, researchers could apply an experimental therapeutic agent and then expose the mouse to the same stimuli to see if the neuron's function returns.

Although the technology can't be used on humans, mouse models are a common starting point for new therapies for human neurodegenerative diseases, and Schnitzer believes the system could be a very useful tool in evaluating pre-clinical research.

The work was published Feb. 10 in the online edition of Nature Neuroscience. The researchers have formed a company to manufacture and sell the device.
Media Contact

Mark Schnitzer, Biology and Applied Physics: (650) 725-7438, mschnitzer@gmail.com

Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Bjorn Carey | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>