Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers boost potency, reduce side effects of IL-2 protein used to treat cancer

19.03.2012
The utility of a naturally occurring protein given, sometimes to great effect, as a drug to treat advanced cancers is limited by the severe side effects it sometimes causes.

But a Stanford University School of Medicine scientist has generated a mutant version of the protein whose modified shape renders it substantially more potent than the natural protein while reducing its toxicity.

The findings will appear online March 18 in Nature.

The protein, known as interleukin-2 or IL-2, is a master regulator of the immune system. It acts as a growth factor for many different kinds of immune cells, including an all-important class called T cells. These cells can both recognize and organize attacks against pathogens or tumors.

IL-2 stimulates T cells' proliferation in response to these threats. That makes it a potent anti-cancer drug. When injected into a patient, it spurs fierce anti-tumor activity.

"In a substantial subset — about 7 percent — of patients with advanced metastatic melanomas or kidney cancers, IL-2 treatment actually cures the disease," said Christopher Garcia, professor of molecular and cellular physiology and of structural biology and the study's senior author. That's an impressive result, considering the failure of most treatments at such a late stage of cancer.

IL-2 is also used off-label for various other cancers and a wide range of other indications including HIV. But its use is restricted because it can cause severe toxic side effects such as difficulty in breathing due to pulmonary edema, or swelling of the lung, caused by the buildup of fluid in that organ. This in turn is the result of leakage from the copious capillaries that permeate lung tissue, the better to carry away oxygenated blood to distant tissues.

"The cells that cause these toxic effects appear to express different levels and types of IL-2 receptors than do the cells that produce the therapeutic effects," Garcia said. The various classes of immune cells activated by IL-2 have their own characteristic receptor complexes for the protein. Accordingly, each different cell type requires a different concentration of IL-2 for its activation, and each responds in its own way.

In 2005, Garcia and his colleagues determined the structure of IL-2, making it possible to visualize its internal features. "We thought we might be able to tilt the balance of therapeutic-to-toxic effects by modifying this protein in a way that preferentially trips off activation of a desired immune-cell type, while minimizing the activation of an unwanted cell type," he said.

For this study, Garcia's group produced a vast variety of mutated versions of the protein, and then, in a test-tube competition, compared the strength of these mutant proteins' binding to a particular cell-surface receptor, a process that is crucial to the T-cell activation needed to treat cancer. The researchers eventually obtained a mutant that Garcia dubbed "Super-2," which had more than 300 times the receptor-binding strength of natural IL-2. In subsequent tests designed to assess Super-2's ability to impede tumor growth, the new molecule outperformed natural IL-2 by a significant margin.

The researchers also tested Super-2 to determine the extent of the side effects it would cause. To do this, they collaborated with a co-author of the paper, Onur Boyman, MD, of University Hospital Zurich in Switzerland, who had previously found that the type of cells in the lung that are responsible for capillary leakage have receptors for IL-2. Boyman developed an assay for IL-2's most dose-limiting side effect, pulmonary edema. This assay compares the weight of lungs from mice treated with a test compound versus lungs that are not thusly treated. The greater the weight difference, the more fluid buildup has occurred.

Boyman and a member of his group, Carsten Krieg, PhD, who is one of four investigators sharing first authorship of the Nature paper, carried out all the animal research used for the study. By this assay, pulmonary edema caused by Super-2 was significantly and substantially less than by natural IL-2.

Others sharing first authorship of the study were Aron Levin, PhD, (now at Technion University in Israel) and Darren Bates, PhD, (now a scientist at Amgen) who were formerly in Garcia's lab, and his MD/PhD student Aaron Ring.

What makes Super-2 so effective, said Garcia, is its altered shape. A T-cell's IL-2 receptor complex consists of three separate protein components sitting on the cell's surface. These receptors, sometimes referred to as alpha, beta and gamma, act in concert: IL-2 must first touch bases with alpha before it can assume the right shape to bind to beta. Typically, T cells that have never been activated in the past have vanishingly small amounts of alpha on their surfaces, and so require high concentrations of IL-2 to get the process started.

But the mutations Garcia's team induced lock Super-2 into a configuration whose optimized shape lets it bind directly to beta, bypassing alpha. The three-dimensional structure of Super-2, together with computer simulations from the laboratory of associate professor of chemistry Vijay Pande, PhD, suggested this was because the mutant form of IL-2 was less "floppy" than the natural form, so that it presented a "tighter" binding surface to the beta receptor. This souped-up form of the protein was several times as potent as the naturally occurring form of IL-2 at slowing tumor growth, as measured by assays employing three different tumor types in culture.

But Super-2 is no more proficient than natural IL-2 at activating the immune cell type responsible for causing capillary leakage and the ensuing pulmonary edema. So, its ratio of activation is skewed much more favorably toward T-cell activation. Because of that, it's possible to give amounts of Super-2 that jump-start T-cell activation without setting off the type of cells that cause pulmonary edema.

Major pharmaceutical companies have expressed an interest in Super-2, according to Garcia, who said he suspects that a licensing agreement from one of them may be in the offing. Stanford has applied for a patent on Super-2.

However, he said, a group at the National Institutes of Health, including some of the heavyweight scientific experts who originally put IL-2 through its clinical paces some years ago, is now testing Super-2 from Garcia's lab in a large number of tumor models, in the hope of fast-tracking its development as a new therapy for additional cancer indications. "I hope it goes this route, because that would mean human trials would get started more quickly," Garcia said.

Additional co-authors of the study, which was funded by the NIH and the Howard Hughes Medical Institute, were C. Garrison Fathman, MD, professor of immunology and rheumatology; postdoctoral scholars Jack Lin, PhD, Leon Su, PhD, Ignacio Moraga, PhD, and Gregory Bowman, PhD; graduate student Paul Novick; and student Miro Raeber.

Information about the medical school's departments of Molecular and Cellular Physiology and of Structural Biology, which also supported this work, is available at http://mcp.stanford.edu/ and http://structuralbio.stanford.edu/, respectively.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html

Bruce Goldman | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>