Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Stanford method enables sequencing of fetal genomes using only maternal blood sample

05.07.2012
Researchers at the Stanford University School of Medicine have for the first time sequenced the genome of an unborn baby using only a blood sample from the mother.

The findings from the new approach, to be published July 4 in Nature, are related to research that was reported a month ago from the University of Washington. That research used a technique previously developed at Stanford to sequence a fetal genome using a blood sample from the mother, plus DNA samples from both the mother and father.

The whole genome sequencing in the new Stanford study, however, did not require DNA from the father — a significant advantage when a child's true paternity may not be known (a situation estimated to affect as many as one in 10 births in this country) or the father may be unavailable or unwilling to provide a sample. The technique brings fetal genetic testing one step closer to routine clinical use.

"We're interested in identifying conditions that can be treated before birth, or immediately after," said Stephen Quake, PhD, the Lee Otterson Professor in the School of Engineering and professor of bioengineering and of applied physics. "Without such diagnoses, newborns with treatable metabolic or immune system disorders suffer until their symptoms become noticeable and the causes determined." Quake is the senior author of the research. Former graduate student H. Christina Fan, PhD, now a senior scientist at ImmuMetrix, and current graduate student Wei Gu are co-first authors of the article.

As the cost of such technology continues to drop, it will become increasingly common to diagnose genetic diseases within the first trimester of pregnancy, the researchers believe. In fact, they showed that sequencing just the exome, the coding portion of the genome, can provide clinically relevant information.

In the new study, the researchers were able to use the whole-genome and exome sequences they obtained to determine that a fetus had DiGeorge syndrome, which is caused by a short deletion of chromosome 22. Although the exact symptoms and their severity can vary among affected individuals, it is associated with cardiac and neuromuscular problems, as well as cognitive impairment. Newborns with the condition can have significant feeding difficulties, heart defects and convulsions due to excessively low levels of calcium.

"The problem of distinguishing the mother's DNA from the fetus's DNA, especially in the setting where they share the same abnormality, has seriously challenged investigators working in prenatal diagnosis for many years," said Diana Bianchi, MD, executive director of the Mother Infant Research Institute at Tufts Medical Center, who was not involved in the Nature study. "In this paper, Quake's group elegantly shows how sequencing of the exome can show that a fetus has inherited DiGeorge syndrome from its mother." (Bianchi is chair of the clinical advisory board of Verinata Health Inc., a company that provides a fetal genetic test using earlier technology developed by Quake.)

Prenatal diagnosis is not new. For decades, women have undergone amniocentesis or chorionic villus sampling in an attempt to learn whether their fetus carries genetic abnormalities. These tests rely on obtaining cells or tissue from the fetus through a needle inserted in the uterus — a procedure that can itself lead to miscarriage in about one in 200 pregnancies. They also detect only a limited number of genetic conditions.

The new technique hinges on the fact that pregnant women have DNA from both their cells and the cells of their fetus circulating freely in their blood. In fact, the amount of circulating fetal DNA increases steadily during pregnancy, and late in the third trimester can be as high as 30 percent of the total.

In 2008, Quake's lab pioneered the use of the relative levels of fetal DNA in maternal blood to diagnose conditions caused by missing or extra chromosomes, such as Down syndrome. Four companies in the United States now market tests based on the technique to physicians and parents, and demand for the service is increasing steadily. (Quake's specific approach was licensed by Stanford to Redwood City-based Verinata and South San Francisco-based Fluidigm Inc. Neither company was involved in the current study.) These tests, however, do not provide a full-genome profile, and cannot identify more-subtle genetic anomalies that occur within chromosomes and other DNA.

This study takes the blood-sampling test one step farther by recognizing that circulating fetal DNA contains genetic material from both the mother and the father. By comparing the relative levels in the mother's blood of regions of maternal (from both the mother and the fetus) and paternal (from the fetus only) DNA known as haplotypes, the researchers were able to identify fetal DNA from the mix and isolate it for sequencing. The method differs from that of the University of Washington group by inferring the father's genetic contribution, rather than sampling it directly (through saliva).

The Stanford team tried its method in two pregnancies. One of the mothers had DiGeorge syndrome; the other did not. Their whole genome and exome sequencing showed that the child of the woman with DiGeorge syndrome would also have the disorder. The finding was confirmed by comparing the predicted fetal genome sequence with the sequence obtained immediately after birth from umbilical cord blood. Although the experiments were performed retrospectively and these women and their babies remained anonymous, a similar finding in a real clinical setting would likely prompt doctors to assess the baby's heart health and calcium levels shortly after birth.

"Three years ago we were very excited about successfully validating non-invasive fetal aneuploidy detection," said study co-author Yair Blumenfeld, MD, a clinical assistant professor of obstetrics and gynecology at Stanford medical school. "But we always knew that detecting fetal chromosomal abnormalities was just the tip of the iceberg, and that diagnosing individual gene defects was the future. This important study confirms our ability to detect individual fetal gene defects simply by testing mom's blood."

The researchers plan to continue to develop the technology for eventual use in the clinic.

In addition to Quake, Gu, Fan and Blumenfeld, other Stanford scientists involved in the research include graduate student Jianbin Wang and professor of obstetrics and gynecology Yasser El-Sayed, MD.

The research was funded with support from the Howard Hughes Medical Institute and the National Institute of Health.

Quake and Fan hold shares in Verinata Health and Fluidigm. Quake is also co-chair of Stanford's Department of Bioengineering, which is run jointly by the schools of Engineering and of Medicine.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

The Stanford School of Engineering has been at forefront of innovation for nearly a century, creating pivotal technologies and businesses that have transformed the worlds of technology, medicine, energy and communications and laid the foundation for Silicon Valley. The school advances modern science and engineering through teaching and research. The school is home to nine departments, 245 faculty and more than 4,000 students, tackling the world's most pressing problems in areas like human health and environmental sustainability. For more information, visit http://engineering.stanford.edu.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu
http://engineering.stanford.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>