Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford discovery pinpoints new connection between cancer cells, stem cells

03.07.2009
A molecule called telomerase, best known for enabling unlimited cell division of stem cells and cancer cells, has a surprising additional role in the expression of genes in an important stem cell regulatory pathway, say researchers at the Stanford University School of Medicine.

The unexpected finding may lead to new anticancer therapies and a greater understanding of how adult and embryonic stem cells divide and specialize.

"Telomerase is the factor that accounts for the unlimited division of cancer cells," said Steven Artandi, MD, PhD, associate professor of hematology, "and we're very excited about what this connection might mean in human disease." Artandi is the senior author of the research, which will be published in the July 2 issue of the journal Nature. He is also a member of Stanford's Cancer Center.

In many ways, telomerase is the quintessential molecule of mystery — hugely important and yet difficult to pin down. Telomerase was known to stabilize telomeres, special caps that protect the ends of chromosomes. It stitches short pieces of DNA on these chromosome ends in stem cells and some immune cells, conferring a capacity for unlimited cell division denied to most of the body's other cells. Its importance is highlighted by the fact that it is inappropriately activated in more than 90 percent of cancer cells, suggesting that drugs or treatments that block telomerase activity may be effective anticancer therapies. However, its vast size, many components and relative rarity — it is not expressed in most of the body's cells — hinder attempts to learn more about it.

Artandi and his lab have spent many years identifying and studying the components of the telomerase complex. In this most recent study, they were following up on a previous finding suggesting that one part, a protein called TERT, was involved in more than just maintaining telomeres. They had discovered that overexpressing TERT in the skin of mice stimulated formerly resting adult stem cells to divide — even in the absence of other telomerase components. "This was a pretty clear hint that TERT was involved in something more than just telomere maintenance," he said.

Artandi and his colleagues recognized that the cells' response to TERT mimicked that seen when another protein, beta-catenin, was overexpressed in mouse skin. Beta-catenin is a component of a vital signaling cascade known as the Wnt pathway, which is important in development, stem cell maintenance and stem cell activation. Stanford developmental biologist and professor Roeland Nusse, PhD, a collaborator on the current study, identified the first Wnt molecule in 1982.

In this study, Artandi and his colleagues purified the TERT protein from cultured human cells and found that it was associated with a chromatin-remodeling protein implicated in the Wnt pathway. They showed that overexpression of TERT in the presence of the remodeling protein enhanced the expression of Wnt-inducible genes. Finally, they found that TERT is required for mouse embryonic stem cells to respond appropriately to Wnt signals and that blocking TERT expression impairs the development of frog embryos.

"This is completely novel," said Artandi, who went on to show that TERT physically occupies the upstream promoter regions of the genes. "No one had any idea that TERT was directly regulating the Wnt pathway." He speculates that interfering with the protein's Wnt-associated activity may be a faster way to inhibit cancer cells than blocking telomerase activity, which depends on the gradual shortening of telomeres with each cell division.

"The Wnt pathway and telomerase activity are two separate but coherent functions in stem cell self-renewal and cancer cell proliferation," said Artandi. "Nature evolved a way to connect these two crucial functions by recruiting a component of telomerase directly into the Wnt pathway." The researchers are now investigating what role TERT may play in normal and cancerous cells.

In addition to Artandi and Nusse, other Stanford collaborators on the current study include postdoctoral scholars Jae-Il Park, PhD, Jinkuk Choi, PhD, and Marina Shkreli, PhD; graduate students Andrew Venteicher, PhD, and Peggie Cheung; and research assistants Sohee Jun and Woody Chang. The research was funded by the National Cancer Institute and the California Breast Cancer Research Program.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>