Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stanford bioengineers close to brewing opioid painkillers without using opium from poppies


A decade-long effort in genetic engineering is close to re-programming yeast cells to make palliative medicines in stainless steel vats

For centuries poppy plants have been grown to provide opium, the compound from which morphine and other important medicines such as oxycodone are derived.

Bio-Production of Opioid Painkillers

Stanford Bioengineer Christina Smolke has been on a decade-long quest to genetically alter yeast so they can "brew" opioid medicines in stainless steel vats, eliminating the need to raise poppies and then industrially refine derivatives of opium into pain pills.

Credit: Credit: Poppy image created by Rachel Sakai

Now bioengineers at Stanford have hacked the DNA of yeast, reprograming these simple cells to make opioid-based medicines via a sophisticated extension of the basic brewing process that makes beer.

Led by Associate Professor of Bioengineering Christina Smolke, the Stanford team has already spent a decade genetically engineering yeast cells to reproduce the biochemistry of poppies with the ultimate goal of producing opium-based medicines, from start to finish, in fermentation vats.

"We are now very close to replicating the entire opioid production process in a way that eliminates the need to grow poppies, allowing us to reliably manufacture essential medicines while mitigating the potential for diversion to illegal use," said Smolke, who outlines her work in the August 24th edition of Nature Chemical Biology.

In the new report Smolke and her collaborators, Kate Thodey, a post-doctoral scholar in bioengineering, and Stephanie Galanie, a doctoral student in chemistry, detail how they added five genes from two different organisms to yeast cells. Three of these genes came from the poppy itself, and the others from a bacterium that lives on poppy plant stalks.

This multi-species gene mashup was required to turn yeast into cellular factories that replicate two, now-separate processes: how nature produces opium in poppies, and then how pharmacologists use chemical processes to further refine opium derivatives into modern opioid drugs such as hydrocodone.

Subtitle: From Plants to Pills Today

Plant-derived opium has been used and abused for centuries, but a good place to begin the modern story is with the use of morphine during World War II.

Morphine is one of three principal pain killers derived from opium. As a class they are called opiates. The other two important opiates are codeine, which has been used as a cough remedy, and thebaine, which is further refined by chemical processes to create higher-value therapeutics such as oxycodone and hydrocodone, better known by brand names such as OxyContin and Vicodin, respectively.

Today legal poppy farming is restricted to a few countries--including Australia, France, Hungary, India, Spain and Turkey--supervised by the International Narcotics Control Board, which seeks to prevent opiates like morphine, for instance, from being refined into illegal heroin.

The biggest market for legal opiates, and their opioid derivatives, is the United States, where pharmaceutical factories use chemical processes to create the refined products that are used as pain-killing pills. However poppies are not grown in significant quantities in the U.S., creating various international dependencies and vulnerabilities in the supply of these important medicines.

Subtitle: Turning Yeast Into a Pharmaceutical Factory

The thrust of Smolke's work for a decade has been to pack the entire production chain, from the fields of poppies, through all the subsequent steps of chemical refining, into yeast cells using the tools of bioengineering.

What Smolke's team has now done is to carefully reprogram the yeast genome—the master instruction set that tells every organism how to live—to behave like a poppy when it comes to making opiates.

The process involved more than simply adding new genes into yeast. Opioid molecules are complex three-dimensional objects. In nature they are made in specific regions inside the poppy. Since yeast cells do not have these complex structures and tissues, the Stanford team had to recreate the equivalent of poppy-like "chemical neighborhoods" inside their bioengineered yeast cells.

It takes about 17 separate chemical steps to make the opioid compounds used in pills. Some of these steps occur naturally in poppies and the remaining via synthetic chemical processes in factories. Smolke's team wanted all the steps to happen inside yeast cells within a single vat, including using yeast to carry out chemical processes that poppies never evolved to perform—such as refining opiates like thebaine into more valuable semi-synthetic opioids like oxycodone.

So Smolke programmed her bioengineered yeast to perform these final industrial steps as well. To do this she endowed the yeast with genes from a bacterium that feeds on dead poppy stalks. Since they wanted to produce several different opioids, the team hacked the yeast genome in slightly different ways to produce each of the slightly different opioid formulations, such as oxycodone or hydrocodone.

Subtitle: The Missing Link

All of this was demonstrated in the new paper. But Smolke's team must still clear one more hurdle in order to achieve the goal of pouring sugar into a stainless steel vat of bioengineered yeast and skimming off specific opioids at the end of the process. They must perform another set of bioengineering hacks to connect the two major advances they have made over the past decade.

Remember that it takes about 17 chemical steps to go from poppy to pill. When she began the work in 2004, Smolke started early in the process and went about halfway through these chemical steps. In a 2008 paper she reported success in that first phase of the project when her bioengineered yeast produced a precursor to thebaine--one of the three principal opiates.

In her new paper, Smolke started with thebaine obtained from poppies, put this into her bioengineered yeast and got refined opioids at the end of the process.

Now her team must extend the 2008 process from sugar to thebaine. Once she forges this missing link in the chain of biochemical synthesis, she will have produced a bioengineered yeast that can perform all 17 steps from sugar to specific opioid drugs in a single vat.

"We are already working on this," she said.

Smolke said it could take several more years to perfect these last steps in the lab and scale up the process to produce large sized batches of bioengineered opioids that are pharmacologically identical to today's drugs that start in a field and are refined in factories.

"This will allow us to create a reliable supply of these essential medicines in a way that doesn't depend on years leading up to good or bad crop yields," Smolke said. "We'll have more sustainable, cost-effective, and secure production methods for these important drugs."

Tom Abate | Eurek Alert!
Further information:

Further reports about: bioengineered drugs factories genes medicines morphine opiates opium oxycodone painkillers processes steps sugar

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>