Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude scientists discover a new mechanism controlling neuronal migration

20.07.2009
Understanding how neurons migrate to their proper place during brain development will offer insights into how malfunctions in the machinery cause epilepsy and mental retardation

The molecular machinery that helps brain cells migrate to their correct place in the developing brain has been identified by scientists at St. Jude Children's Research Hospital.

The finding offers new insight into the forces that drive brain organization in developing fetuses and children during their first years. Disruption of this brain-patterning machinery can cause epilepsy and mental retardation and understanding its function could give new insight into such disorders.

Led by David Solecki, Ph.D., an assistant member in the St. Jude Department of Developmental Neurobiology, the researchers published their findings in the July 16 issue of the journal Neuron.

In the experiments, the researchers sought to understand the biological machinery powering a process called glial-guided neuronal migration. Glial cells in the brain support and guide neurons, which make up the brain's wiring. During brain development, neurons are born in germinal zones at some distance from where they must ultimately land in order to form brain structures and integrate into the brain's circuitry.

"Glial cells produce very thin fibers, and neurons in essence walk a tightrope along these fibers in moving from these germinal zones to their final position," Solecki said. In earlier work, Solecki and his colleagues identified a control molecule called Par6 alpha that regulates this migration. Other researchers had produced evidence that a molecular motor called Myosin II might power the migration. Myosins are proteins that use chemical energy to create contractions by moving along filamental proteins called actins—like a train moves along a railroad track.

The researchers used a technique of microscopic time-lapse imaging to establish that Myosin II and actin made up the machinery of neuronal migration. Working with cultures of migrating neurons, the investigators used fluorescent dyes to label Myosin II and actin proteins, as well as key cell structures. The scientists then illuminated the cultures with rapid-fire pulses of laser light measured in thousandths of a second, taking an image with each flash. The result was a series of micromovies that revealed how the Myosin II and actin proteins and cell structures behaved during migration.

These micromovies showed that the Myosin II-actin machinery powers neuronal migration. As part of a step-wise migration process, the machinery pulls the internal cell structures of the neuron forward during migration to allow those structures to build the scaffolding that enables the neuron to move the main cell body forward. The researchers demonstrated that both Myosin II and actin are necessary for the process, because they could completely shut it down by using drugs that inhibited either molecule.

"No one had actually looked in living cells to see the configuration of actin in migrating neurons to show how it positions the machinery that will eventually elicit movement of the cell," Solecki said. "We also found that contraction of Myosin II in the leading portion of a neuron powers movement."

Critical to the researchers' success was the development of a computer analysis technique for the massive number of time-lapse images, Solecki said. The analysis program was developed by study co-authors Ryan Kerekes, Ph.D., and Shaun Gleason, Ph.D., of Oak Ridge National Laboratories in Tennessee.

"Our time-lapse microscopy could image hundreds of cells in a single afternoon, but analyzing that mass of data by hand would have taken months," Solecki said. "However, the automated analysis enabled those data to be analyzed in a matter of hours. Also, the automated analysis was free of the kind of natural bias that can occur when humans analyze such images."

In further experiments, the researchers also showed that Par6 alpha regulates Myosin II motor activity, shedding light on how the machinery is regulated. Additional studies will explore that regulation mechanism further.

Basic understanding of the migration machinery could have important clinical implications.

"If we more clearly understand how neurons migrate in neural development, we will have a better framework to explain the basis of neuronal migration defects in children," Solecki said. "Also, cell migrations may contribute towards the spread of brain tumors in children. If we can understand how normal neurons migrate, we might be able to dissect the machinery of the migration of brain tumor cells."

Other authors of the paper are Niraj Trivedi (St. Jude); and Eve-Ellen Govek and Mary Hatten (The Rockefeller University, New York). The research was supported in part by the March of Dimes, the National Institutes of Health, a Cancer Center Support Grant and ALSAC.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>