Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SSRIs may pack more punch at the cellular level than believed

17.08.2010
Research published in the journal Genetics suggests that sertraline targets intracellular membranes of yeast cells that don't express the known therapeutic target, suggesting a secondary drug target or pathway

A new discovery about selective serotonin reuptake inhibitors (SSRIs) suggests that these drugs, which are used to treat mental health disorders like depression and anxiety, have multiple effects on our cells.

In a research report published in the August 2010 issue of GENETICS (http://www.genetics.org), researchers used yeast cells to identify secondary drug targets or pathways affected by SSRIs. Such secondary pathways could help explain why different people taking the same drug may experience different effects, and could also lead to new types of drugs altogether.

"We hope that our study begins to illuminate the full breadth of pharmacological effects of antidepressants on cellular physiology starting with the simple unicellular eukaryote, budding yeast," said Ethan O. Perlstein, Ph.D, a researcher involved in the work from the Lewis-Sigler Institute for Integrative Genomics at Princeton University in New Jersey. "Furthermore, our work validates the notion that simple model organisms may be useful for the study of complex human disease."

Knowing that a high concentration of sertraline (Zoloft®) is toxic to yeast cells, scientists applied a lethal dose to millions of these cells and fished out a few cells that became resistant to the drug. Researchers then identified the underlying mutations in those cells and applied genetic, biochemical, and electron microscopic imaging techniques to characterize the molecular basis of resistance. Their results suggest that SSRIs may actually affect more than one process in a cell, including non-protein targets such as phospholipid membranes. Additionally, the study's results demonstrate that sertraline targets intracellular membranes and modulate pathways involved in vesicle trafficking that are present in both yeast and human cells. Vesicle trafficking plays an important role in how neural synapses develop and function. More work is necessary, however, to determine the exact clinical relevance of this secondary drug target.

"There's no question that SSRIs help thousands of people with mental health problems," said Mark Johnston, Editor-in-Chief of the journal GENETICS, "but as this research shows, there is still some mystery about how they help us. This study a key first-step toward giving us a comprehensive answer to how SSRI's work, and it may open doors to entirely new therapies."

Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.genetics.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>