Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squid studies provide valuable insights into hearing mechanisms

18.10.2010
The ordinary squid, Loligo pealii—best known until now as a kind of floating buffet for just about any fish in the sea—may be on the verge of becoming a scientific superstar, providing clues about the origin and evolution of the sense of hearing.

In a hangar-like research building at the Woods Hole Oceanographic Institution (WHOI), biologist T. Aran Mooney is exploring virtually uncharted waters: Can squid hear? Is their hearing sensitive enough to hear approaching predators? How do squid and other marine species rely on sound to interact, migrate, and communicate? Will the burgeoning cacophony of sound in the ocean disrupt marine life's behavior and threaten their survival?

"The sound in the ocean is increasing…commercial shipping, oil and gas exploration…those make a lot of noise," Mooney says. "And you don't know how that is going to affect the animal unless you know what it hears."

Mooney, a postdoctoral scholar at WHOI, has undertaken seminal investigations into the hearing of this seminal creature in the marine food web. His study is published Friday, Oct. 15, in the Journal of Experimental Biology

"Almost every type of marine organism feeds somehow off the squid," says Mooney. Not just fish, but also many birds, seals, sea lions, and dolphins and toothed whales depend heavily on squid. Whales, according to Mooney, consume some 320 metric tons of squid a year; people eat another 280 metric tons annually.

Mooney says it may be the squid's role as a predator's entrée that holds the key to understanding the importance of hearing among squid and other ocean creatures. This is because predator avoidance is a key pressure for evolving hearing capabilities. If you can hear your predators approaching, you have a better chance of avoiding them. Eventually, he said, a better understanding of how squid hear may shed light on human hearing as well.

Despite their importance in the marine food web, little is known about how well squid hear and whether they rely on hearing to navigate, sense danger, and communicate with each other. Until recently, it wasn't clear that they even hear at all.

It is known now, through the work of Mooney and others, that the squid hearing system has some similarities and some differences compared to human hearing. Squid have a pair of organs called statocysts, balance mechanisms at the base of the brain that contain a tiny grain of calcium, which maintains its position as the animal maneuvers in the water. These serve a function similar to human ear canals.

Each statocyst is a hollow, fluid-filled sac lined with hair cells, like human cochlea. On the outside of the sac, the hair cells are connected to nerves, which lead to the brain. "It's kind of like an inside-out tennis ball," Mooney said, "hairy on the inside, smooth on the outside."

The calcium grain, called a statolith, enables the squid to sense its position in the water, based on which hair cells it's in contact with at a given moment. Normally it rests near the front of the sac, touching some of the hair cells.

When a squid moves quickly—as it does when it flees an approaching predator—the heavy calcium stone lags behind slightly before catching up to the hair cells. "Kind of like your stomach on a roller coaster," Mooney said. "The hair cells are very sensitive and can detect the calcium statolith lagging behind, then catching up."

Structurally, the statocyst "is analogous to our auditory system," said Mooney, who began his hearing research while working on his Ph.D. at the University of Hawaii. The statocyst, he thinks, "is on its way to becoming an ear" like the more familiar ears of vertebrates.

But to what extent does it function as an ear? "One of the obvious questions is, 'Can this acceleration-sensing 'ear' to also detect sounds?' Then, if they can hear sounds 'Do squid hear their predators coming?' " Mooney asked.

To find out if squid have true, functioning "ears," Mooney tests whether the nerves coming from the statocysts send impulses in response to sound. He anesthetizes a squid and attaches an electrode just under the skin near the nerves that extend from the statocysts. He attaches another sensor into the squid's back to get baseline measurements of electrical signals, because that part of the body should not respond to sounds.

He then lowers the squid into a shallow, 3-foot-wide tank. Also in the tank is a speaker that can emit a broad range of sound frequencies—pure tones repeated about 1,000 times for each frequency. He then records the 1,000 responses to each. Averaging those 1,000 responses reduces the natural, random electrical noise in the body yielding the electrical signals, in millivolts, that occur along the nerves after each tone. This hearing test method is similar to those used to checking hearing in human infants.

His preliminary findings indicate that nerve responses showed the squid "actually do hear," he said. "But they only hear up to a certain frequency, about 500 Hz, which is pretty typical of a lot of fish that don't hear very well." Humans hear from about 20-20,000 Hz. Squid also do not detect the very high frequency sounds of dolphin echolocation clicks.

That may help explain why squid are such a prolific food source: They may not always hear well enough to get out of the way of approaching predators. But when Mooney and his post-doc advisor [name?] put the squid in a CT scanner, they found that squid may avoid predators in another way: they are almost the same density as water. That is, when squid were scanned in water, the CT could not image the squid body, illustrating that squid are nearly transparent to sound. This would likely make them very difficult for echolocating predators to detect. So, perhaps, squid could not take the evolutionary leap to adapt ears to detect very high frequencies, but being close in density to water is advantageous for several reasons, including avoiding predators.

Still, its auditory mechanisms have been good enough to make squid successful in an evolutionary sense. What, then, is the main purpose of the squid's hearing system?

Mooney said his work falls under the heading of "sensory biology," the study of how animals use their sensory systems to figure out the world around them. After the initial tests to see how sensitive squid are to sounds and their frequency range, he next studies will be to try to determine how important those abilities are to the animal. Do squid rely on sound to interact, migrate, communicate?

In one set of experiments Mooney will move the speakers to different positions and measure the nerves' response to see if they sense the location of that speaker.

"It's been suggested that a primary evolutionary drive behind hearing is to locate where the sound source is," he said. "If your mother is calling to you, you have to know where your mother is. If there's a predator coming you'd better darn well know where that predator is coming from so that you can get out of the way."

Another question Mooney wants to pursue is how much—if at all, squid are affected by sounds of human origin in the ocean. Loud sounds, whether a sudden explosion or continuous ship traffic, might cause squid to migrate unnaturally just to escape the racket.

Mooney also thinks squid statocysts can tell scientists a lot about how ears originated and evolved.

"Humans, fish, and lots of animals use hair cells to detect sound and movement. Their hair cell structures are similar to squid, but also quite different," said Mooney. "There is probably a basic structure which evolved millions of years ago, but vertebrates and invertebrates have taken quite different evolutionary paths since.

"By learning more about squid hearing and squid hair cells, we might learn what is important in human hearing and human hair cells, or other animals for that matter," he said. "Down the road, squid ears and hair cells might be models for examining human hearing. But that's just speculative right now. We need to learn more about the basic functioning of squid ears first."

Paul Nachtigall, a biologist at the University of Hawaii who advised Mooney on his doctoral research on hearing and echolocation in whales and dolphins, said Mooney's research on squid hearing mechanisms and the ecological uses of hearing in squid are "groundbreaking."

"Aran was launched out of here with great success," said Nachtigall, "and his rocket appears to have reached stage two prior to reaching a stellar orbit."

Mooney's work with squid is funded by The Grass Foundation and a WHOI Independent study award from the Andrew W. Mellon Fund for Innovative Research.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>