Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Squeezing Out CO2

Post-combustion capture: metal-organic framework releases stored carbon dioxide in sunlight

In order to reduce the carbon dioxide output from coal power plants, CO2 could be removed from their exhaust (post-combustion capture) and stored or, if possible, used as a carbon source for chemical syntheses.

Previous approaches to this have suffered from the fact that they require too much energy. In the journal Angewandte Chemie, Australian scientists have now introduced a new metal–organic framework compound that absorbs CO2 and then releases it upon exposure to sunlight.

Current techniques for the removal of CO2 from coal power plant exhausts by using liquid amines consume vast amounts of energy—sometimes up to 30 % of the energy produced by the plant. Most of the energy consumed in these processes is used to release the CO2 from the absorbent by raising the temperature or applying a vacuum.

A team headed by Richelle Lyndon and Matthew R. Hill is focusing on the use of concentrated sunlight as an alternative energy source for the release of CO2. The Australian researchers hope to achieve this by using metal–organic frameworks (MOFs) to absorb the CO2. MOFs are crystals constructed like a scaffold with pores that can hold guest molecules.

The “joints” of the framework consist of metal ions or clusters; the “struts” are organic molecules. Clever selection of the individual components allows the size and chemical properties of the pores to be tailored for specific applications. In this case, they are arranged so that CO2 can be stored in the pores.

The team from the Commonwealth Scientific and Industrial Research Organization (CSIRO) and Monash University (Australia) chose to use two different organic molecules for the vertical and horizontal struts. However, the molecules have one thing in common: irradiation with UV light causes them to alter their spatial structure. The molecules are securely fastened into the framework, which results in strain that limits the molecules to moving rapidly back and forth. Because of this, only small, limited regions of the framework move at any one time, and stop the entire structure collapsing.

The oscillating structural changes reduce the attractive forces between the surface of the pores and the absorbed CO2. A majority of the CO2 is squeezed out of the framework like water from a wrung-out sponge.

This process works best with UV light, but also works with concentrated natural sunlight. These light-reactive metal–organic frameworks could thus be an interesting approach for the energy-efficient removal of CO2 from combustion gases. Further investigations are needed to demonstrate how this separation works with real exhaust gases.

About the Author
Dr Matthew Hill is a senior research scientist with the CSIRO, Australia’s national laboratories. As an inorganic materials chemist he specialises in the construction of materials for clean and renewable energy applications. He is the recipient of the 2012 Eureka Prize for Emerging Leadership in Science.

Author: Matthew R. Hill, CSIRO Division of Materials Science and Engineering, Clayton (Australia),

Title: Dynamic Photo-Switching in Metal–Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release

Angewandte Chemie International Edition, Permalink to the article:

Matthew R. Hill | GDCh
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>