Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Springs of Life in the Dead Sea - Scientists discover dense and diverse microbial communities

21.09.2011
The deepest point on the surface of the earth is the Dead Sea in Israel. Now a joint Israeli – German team of scientists found several systems of freshwater springs on the Dead Sea floor.

Their presence has been speculated for decades as concentric ripples on the water surface are visible near the shore, but only with divers it was possible to detect this complex system of springs reaching 30 m depth. To locate and study these springs was quite a task for the scientific diving team, as the high salt concentration makes the diving dangerous and difficult. The divers located the springs and took water and sediment samples in which they detected novel microorganisms.


Artist`s view of the springs system. Left: The Southern site on the West coast is quite steep and the springs did not develop deep wells as in the Northern site. Right: The Northern site on the West coast of the Dead Sea is characterized by deep wells with the springs at their bottom. The wells are interconnected. Professional drivers have been central to the sampling of spring source, the understanding of flow structure, and the calculation of spring discharge and morphology based on submarine photography. Systems of complex springs hundreds of meters long and as deep as 30 meters have been discovered as seen by the underwater video. The springs appear from the sea floor through craters as large as 10 meters in diameter and 13 meters deep – in places where the seafloor is covered by a thick salt layer. Manfred Schloesser, Max-Planck-Institut für Marine Mikrobiologie


Scientific divers had to carry special gears. The salty environment is toxic for humans and the divers had to wear full-face masks. They also had to carry huge amounts of lead to lower their buoyancy and to dive in this high density liquid.
Christian Lott, Hydra Institute, Elba

Until the 1950s the Dead Sea was getting its main water supply from the river Jordan. When this source was cut off to supply drinking water, the sea level of the Dead Sea started to drop at an alarming rate – now decreasing by more than one meter per year. As a further consequence the Dead Sea changed dramatically. Since 1979 the lake has not been not stratified anymore but mixed from top to bottom due to changes in density of the upper water layers. It is difficult to estimate the total water balance of the lake, as several sources and sinks contribute, e. g. the submarine groundwater discharge, part of which derives from unidentified springs.

Novel microbial life in the focus

As far back as in the 1930s Hebrew University of Jerusalem researchers realized that the term 'Dead Sea' is inappropriate due to the presence of microorganisms. Prof. Aharon Oren, a collaborator on this project, has studied the Dead Sea since the 1980s, and observed blooms only twice: in 1980 and in 1992. Now Dead Sea microorganisms are again in the focus of scientists. An Israeli-German research team headed by Dr Danny Ionescu from the Microsensor Group at the Max Planck Institute for Marine Microbiology, Bremen, Germany took a very close look at two sites in the Dead Sea. Equipped with modern diving equipment and state of the art technology they located several springs and collected water samples. The researchers were surprised by the rich variety of microbial life in these water samples and in the vicinity of the springs. Around the springs they found mats of bacteria covering large seafloor areas containing considerable richness of species.

Dr Ionescu says: “These newly discovered bacteria are not the bacteria and algae which colored the Dead Sea in red as in 1992. We think our discovery will raise new questions. Some of these relate to the ability of these bacteria to survive in the Dead Sea, and the energy source feeding this ecosystem.”

“The microbes in the Dead Sea water mainly belong to the domain Archaea and they number around 1,000-10,000 per ml (much lower than regular sea water). Never before have microbial mats or biofilms been found in the Dead Sea and not much is known about sediment bacteria in the Dead Sea,” explain Ionescu.

The team is planning a follow-up expedition to the Dead Sea in October.
“Among the microbial community of the biofilms we found phototrophs, sulfide oxidizers among many other organisms. Most of the findings rely on molecular analysis. Our next expedition in October 2011 will deal with the actual activity of these organisms, and the many more questions that arose from these findings,” he said.

Hydrogeology

As part of the German funded SUMAR project research student Yaniv Munwes and Prof. Jonathan Laronne, Dept of Geography, Ben Gurion University of the Negev, developed a system to directly measure spring discharge and to study the structure of the upward, jet-like plume flow. This will allow a more accurate estimation of the water input into the Dead Sea by these springs.

The hydrological connection between springs occurring on land and submarines springs was in parallel studied by Dr Christian Siebert, Dr Stefan Geyer the PhD student Ulf Mallast from the Hemholtz Center for Environmental Research - UFZ , Halle, Germany. The chemical analysis of the spring water showed that its composition is not a direct result of the freshwater and Dead Sea water mixing but other processes are involved as well.

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de/en/Springs_of_Life_in_the_Dead_Sea.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>