Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring Cleaning in Your Brain’s Stem Cells?

11.04.2013
Years of mouse research lead to discovery of how autophagy keeps neural stem cells ready to replace damaged brain & nerve cells

Deep inside your brain, a legion of stem cells lies ready to turn into new brain and nerve cells whenever and wherever you need them most. While they wait, they keep themselves in a state of perpetual readiness – poised to become any type of nerve cell you might need as your cells age or get damaged.

Now, new research from scientists at the University of Michigan Medical School reveals a key way they do this: through a type of internal “spring cleaning” that both clears out garbage within the cells, and keeps them in their stem-cell state.

In a paper published online in Nature Neuroscience, the U-M team shows that a particular protein, called FIP200, governs this cleaning process in neural stem cells in mice. Without FIP200, these crucial stem cells suffer damage from their own waste products -- and their ability to turn into other types of cells diminishes.

It is the first time that this cellular self-cleaning process, called autophagy, has been shown to be important to neural stem cells.

The findings may help explain why aging brains and nervous systems are more prone to disease or permanent damage, as a slowing rate of self-cleaning autophagy hampers the body’s ability to deploy stem cells to replace damaged or diseased cells. If the findings translate from mice to humans, the research could open up new avenues to prevention or treatment of neurological conditions.

In a related review article just published online in the journal Autophagy, the lead U-M scientist and colleagues from around the world discuss the growing evidence that autophagy is crucial to many types of tissue stem cells and embryonic stem cells as well as cancer stem cells.

As stem cell-based treatments continue to develop, the authors say, it will be increasingly important to understand the role of autophagy in preserving stem cells’ health and ability to become different types of cells.

“The process of generating new neurons from neural stem cells, and the importance of that process, is pretty well understood, but the mechanism at the molecular level has not been clear,” says Jun-Lin Guan, Ph.D., the senior author of the FIP200 paper and the organizing author of the autophagy and stem cells review article. “Here, we show that autophagy is crucial for maintenance of neural stem cells and differentiation, and show the mechanism by which it happens.”

Through autophagy, he says, neural stem cells can regulate levels of reactive oxygen species – sometimes known as free radicals – that can build up in the low-oxygen environment of the brain regions where neural stem cells reside. Abnormally higher levels of ROS can cause neural stem cells to start differentiating.

Guan is a professor in the Molecular Medicine & Genetics division of the U-M Department of Internal Medicine, and in the Department of Cell & Developmental Biology.

A long path to discovery

The new discovery, made after 15 years of research with funding from the National Institutes of Health, shows the importance of investment in lab science – and the role of serendipity in research.

Guan has been studying the role of FIP200 -- whose full name is focal adhesion kinase family interacting protein of 200 kD – in cellular biology for more than a decade. Though he and his team knew it was important to cellular activity, they didn’t have a particular disease connection in mind. Together with colleagues in Japan, they did demonstrate its importance to autophagy – a process whose importance to disease research continues to grow as scientists learn more about it.

Several years ago, Guan’s team stumbled upon clues that FIP200 might be important in neural stem cells when studying an entirely different phenomenon. They were using FIP200-less mice as comparisons in a study, when an observant postdoctoral fellow noticed that the mice experienced rapid shrinkage of the brain regions where neural stem cells reside.

“That effect was more interesting than what we were actually intending to study,” says Guan, as it suggested that without FIP200, something was causing damage to the home of neural stem cells that normally replace nerve cells during injury or aging.

In 2010, they worked with other U-M scientists to show FIP200’s importance to another type of stem cell, those that generate blood cells. In that case, deleting the gene that encodes FIP200 leads to an increased proliferation and ultimate depletion of such cells, called hematopoietic stem cells.

But with neural stem cells, they report in the new paper, deleting the FIP200 gene led neural stem cells to die and ROS levels to rise. Only by giving the mice the antioxidant n-acetylcysteine could the scientists counteract the effects.

“It’s clear that autophagy is going to be important in various types of stem cells,” says Guan, pointing to the new paper in Autophagy that lays out what’s currently known about the process in hematopoietic, neural, cancer, cardiac and mesenchymal (bone and connective tissue) stem cells.

Guan’s own research is now exploring the downstream effects of defects in neural stem cell autophagy – for instance, how communication between neural stem cells and their niches suffers. The team is also looking at the role of autophagy in breast cancer stem cells, because of intriguing findings about the impact of FIP200 deletion on the activity of the p53 tumor suppressor gene, which is important in breast and other types of cancer. In addition, they will study the importance of p53 and p62, another key protein component for autophagy, to neural stem cell self-renewal and differentiation, in relation to FIP200.

The new Nature Neuroscience paper’s first author is post-doctoral fellow Chenran Wang, Ph.D. Co-authors include Richard Chun-Chi Liang, Ph.D., who is now a postdoctoral research fellow in the U-M Department of Neurology, research lab member Christine Bian, and Yuan Zhu, Ph.D., an associate professor in Molecular Medicine & Genetics and Cell & Developmental Biology.

The research was supported by National Institute of General Medical Sciences grant GM052890.

References: Nature Neuroscience Advance Online Publication doi:10.1038/nn.3365
Autophagy, 9:6, 1–20; June 2013
Guan laboratory website: http://sitemaker.umich.edu/guanlaboratory/home
For more information on all types of stem cell research at U-M, visit www.umich.edu/stemcell

Kara Gavin | Newswise
Further information:
http://www.umich.edu
http://www.umich.edu/stemcell

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>