Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the spotlight: Tiny "heroes" in the depths of the Baltic and Black Sea

23.01.2012
Microbiologists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) provide the first comprehensive description of a bacterium that, on the limits of the so-called "dead zones" in the Baltic and Black Sea, prevents the spread of poisonous hydrogen sulfide.

Oxygen is also a vital element under water. In the world's oceans, however, the development of oxygen-minimum zones is an increasing trend. Among the most prominent representatives of this phenomenon are the so-called "dead zones" in the Baltic and Black Sea, where regularly—and in the case of the Black Sea even permanently— an oxygen deficiency accompanied by the occurrence of toxic hydrogen sulfide (sulfide) has been determined at the sea floor.

Furthermore, in maritime regions of enormous importance to the global fishing industry, such as the nutrient-rich upwelling off the southwest coast of Africa, oxygen minimum zones also occur.

Due to the severe economic damage posed by these phenomena and their postulated—and to some extent already observed—increase, biogeochemists and microbiologists throughout the world have been working with physical oceanographers to investigate the causative mechanisms. That the spread of sulfides can be prevented by bacteria has been known for some time, but, it was unclear how this process exactly works, as little was known about the organisms involved.

The microbiologists of the IOW have succeeded, for the first time, in isolating a bacterium that is a major player in sulfide detoxification in oxygen minimum zones. They have also been able to cultivate it and thus to study its physiology. In addition, together with colleagues at the Max Planck Institute for Marine Microbiology in Bremen, they were able to produce a detailed genetic map of the bacterium.

"Sulfurimonas gotlandica" is the provisional designation of the representative of the so-called Epsilonproteobacteria that the Warnemünde scientists found in high abundance at the boundary layer between oxygen-containing (oxic) and oxygen-free (anoxic) water in the Gotland Basin in the central Baltic Sea. It possesses remarkable properties in that its choice of energy sources is not restricted to sulfide but is extremely flexible, allowing the bacterium to inhabit oxic as well as anoxic waters. Genetic analysis showed that "S. gotlandica" is equipped with environmental sensors and a high mobility, allowing it to actively seek out environments that energetically are the most favorable. Moreover, along with its ecologically very important ability of sulfide detoxification "S. gotlandica" possesses two other very important characteristics: it is capable of reducing nitrate to elemental nitrogen (so-called denitrification), thereby ridding eutrophic waters of excess nitrogen, and can use the resulting energy to fix CO2 in the dark in order to build up biomass.

With "S. gotlandica," the Warnemünde microbiologists now have a model organism that is both representative of a group of relatively uncommon bacteria and which allows important processes, such as sulfide detoxification, to be studied in the laboratory. This will facilitate research by the greater scientific community that is aimed at understanding marine "dead zones" and possibly even allow active influence of their development. The working group led by Klaus Jürgens has proven once again that the Baltic Sea, with its highly changeable environmental conditions and strong gradients, is an ideal "model ocean" for the investigation of processes occurring worldwide.

The work described was carried out with support from the Deutsche Forschungsgemeinschaft and the Federal Ministry for Education and Research. The results have been published in:

Grote, J., Schott, T. Bruckner, C.G., Glöckner, F.O., Jost, G., Teeling, H., Labrenz, M., Jürgens, K. (2012): Genome and physiology of a model for responsible Epsilonproteobacterium sulfide detoxification in marine oxygen depletion zones. PNAS 109: 506-510.

For further information, contact:
Prof. Dr. Klaus Jürgens, 0381 / 5197 250, Department Biological Oceanography, IOW
Dr. Barbara Hentzsch, 0381 / 5197 102, Public Relations, IOW

The IOW is a member of the Leibniz Association, which currently includes 87 research institutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.(www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-gemeinschaft.de

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>