Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the spotlight: Tiny "heroes" in the depths of the Baltic and Black Sea

23.01.2012
Microbiologists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) provide the first comprehensive description of a bacterium that, on the limits of the so-called "dead zones" in the Baltic and Black Sea, prevents the spread of poisonous hydrogen sulfide.

Oxygen is also a vital element under water. In the world's oceans, however, the development of oxygen-minimum zones is an increasing trend. Among the most prominent representatives of this phenomenon are the so-called "dead zones" in the Baltic and Black Sea, where regularly—and in the case of the Black Sea even permanently— an oxygen deficiency accompanied by the occurrence of toxic hydrogen sulfide (sulfide) has been determined at the sea floor.

Furthermore, in maritime regions of enormous importance to the global fishing industry, such as the nutrient-rich upwelling off the southwest coast of Africa, oxygen minimum zones also occur.

Due to the severe economic damage posed by these phenomena and their postulated—and to some extent already observed—increase, biogeochemists and microbiologists throughout the world have been working with physical oceanographers to investigate the causative mechanisms. That the spread of sulfides can be prevented by bacteria has been known for some time, but, it was unclear how this process exactly works, as little was known about the organisms involved.

The microbiologists of the IOW have succeeded, for the first time, in isolating a bacterium that is a major player in sulfide detoxification in oxygen minimum zones. They have also been able to cultivate it and thus to study its physiology. In addition, together with colleagues at the Max Planck Institute for Marine Microbiology in Bremen, they were able to produce a detailed genetic map of the bacterium.

"Sulfurimonas gotlandica" is the provisional designation of the representative of the so-called Epsilonproteobacteria that the Warnemünde scientists found in high abundance at the boundary layer between oxygen-containing (oxic) and oxygen-free (anoxic) water in the Gotland Basin in the central Baltic Sea. It possesses remarkable properties in that its choice of energy sources is not restricted to sulfide but is extremely flexible, allowing the bacterium to inhabit oxic as well as anoxic waters. Genetic analysis showed that "S. gotlandica" is equipped with environmental sensors and a high mobility, allowing it to actively seek out environments that energetically are the most favorable. Moreover, along with its ecologically very important ability of sulfide detoxification "S. gotlandica" possesses two other very important characteristics: it is capable of reducing nitrate to elemental nitrogen (so-called denitrification), thereby ridding eutrophic waters of excess nitrogen, and can use the resulting energy to fix CO2 in the dark in order to build up biomass.

With "S. gotlandica," the Warnemünde microbiologists now have a model organism that is both representative of a group of relatively uncommon bacteria and which allows important processes, such as sulfide detoxification, to be studied in the laboratory. This will facilitate research by the greater scientific community that is aimed at understanding marine "dead zones" and possibly even allow active influence of their development. The working group led by Klaus Jürgens has proven once again that the Baltic Sea, with its highly changeable environmental conditions and strong gradients, is an ideal "model ocean" for the investigation of processes occurring worldwide.

The work described was carried out with support from the Deutsche Forschungsgemeinschaft and the Federal Ministry for Education and Research. The results have been published in:

Grote, J., Schott, T. Bruckner, C.G., Glöckner, F.O., Jost, G., Teeling, H., Labrenz, M., Jürgens, K. (2012): Genome and physiology of a model for responsible Epsilonproteobacterium sulfide detoxification in marine oxygen depletion zones. PNAS 109: 506-510.

For further information, contact:
Prof. Dr. Klaus Jürgens, 0381 / 5197 250, Department Biological Oceanography, IOW
Dr. Barbara Hentzsch, 0381 / 5197 102, Public Relations, IOW

The IOW is a member of the Leibniz Association, which currently includes 87 research institutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.(www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-gemeinschaft.de

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>