Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sport makes muscles and nerves fit

02.04.2014

Endurance sport does not only change the condition and fitness of muscles but also simultaneously improves the neuronal connections to the muscle fibers based on a muscle-induced feedback.

This link has been discovered by a research group at the Biozentrum of the University of Basel. The group was also able to induce the same effect through raising the protein concentration of PGC1α in the muscle. Their findings, which are also interesting in regard to muscle and nerve disorders such as muscle wasting and ALS, have been published in the current issue of the journal Nature Communications.


Neuromuscular junction: The motor neuron (red) is connected to the synaptic endplate on the muscle fiber (green).

Illustration: University of Basel, Biozentrum

It’s springtime – the start signal for all joggers. It is well known that a regular run through the forest makes your muscles fit. Responsible for this effect is the protein PGC1α, which plays a central role in the adaptation of muscles to training. The research team led by Prof. Christoph Handschin has discovered that such endurance training not only affects the condition of the muscles but also the upstream synaptic neuronal connections in a muscle-dependent manner.

PGC1α does not only make muscles fit

How do muscles change during muscle training or in muscle disease? Christoph Handschin and his team have been addressing this question for some years. In the past, they have already shown that the protein PGC1α plays a key role in the adaptation of the muscle by regulating the genes that cause the muscles to change accordingly to meet the more demanding requirements. When muscle is inactive or ill, only a low concentration of PGC1α is present. However, when the muscle is challenged, the PGC1α level increases. Through artificial elevation of the PGC1α concentration, it is possible to stimulate muscle endurance.

… but also the nerve connections

Now, the scientists have been able to demonstrate that the increase in muscle PGC1α concentration also improves the upstream synaptic nerve connections to the result of this feedback from muscle to the motor neuron: The health of the synapse improves and its activation pattern adapts to meet the requirements of the muscle. Until now, the influence of the muscle on the synaptic connection was primarily recognized in embryonic development. “That in adults, where the nerve and muscular systems are fully developed, not only the muscle changes due to an increase in PGC1α concentration but also a muscle-controlled improvement in the entire nerve and muscular system takes place, was completely unexpected and a great surprise to us”, says Handschin. “Our current aim is to identify the exact signal that leads to this stabilization of the synaptic connections, in order to apply this for treating muscle disorders.”

… and helps in the treatment of muscle and nerve disorders

A direct therapeutic application of the research findings in illnesses such as muscle wasting and amyotrophic lateral sclerosis (ALS) is already conceivable for Christoph Handschin. “In patients, whose muscles due to their illness are too weak to move on their own, an increase in PGC1α levels could strengthen muscles and nerves until the patients can move enough to finally do some physical therapy and to further improve their mobility”, he explains. After the pharmacological improvement of the health status of the muscles and nerves, the patient could independently continue their treatment through practicing endurance sports.

Original Citation
Anne-Sophie Arnold, Jonathan Gill, Martine Christe, Rocío Ruiz, Shawn McGuirk, Julie St-Pierre, Lucía Tabares & Christoph Handschin
Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α
Nature Communications, published 1 April 2014 | doi:10.1038/ncomms4569

Further Information
Prof. Christoph Handschin, University of Basel, Biozentrum, phone +41 61 267 23 78, email: christoph.handschin@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms4569 - Abstract
http://www.biozentrum.unibas.ch/research/groups-platforms/overview/unit/handschi... - Research Group Prof. Christoph Handschin >

Heike Sacher | Universität Basel

Further reports about: Biozentrum concentration connections disorders muscular nerves role wasting

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>