Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sport makes muscles and nerves fit

02.04.2014

Endurance sport does not only change the condition and fitness of muscles but also simultaneously improves the neuronal connections to the muscle fibers based on a muscle-induced feedback.

This link has been discovered by a research group at the Biozentrum of the University of Basel. The group was also able to induce the same effect through raising the protein concentration of PGC1α in the muscle. Their findings, which are also interesting in regard to muscle and nerve disorders such as muscle wasting and ALS, have been published in the current issue of the journal Nature Communications.


Neuromuscular junction: The motor neuron (red) is connected to the synaptic endplate on the muscle fiber (green).

Illustration: University of Basel, Biozentrum

It’s springtime – the start signal for all joggers. It is well known that a regular run through the forest makes your muscles fit. Responsible for this effect is the protein PGC1α, which plays a central role in the adaptation of muscles to training. The research team led by Prof. Christoph Handschin has discovered that such endurance training not only affects the condition of the muscles but also the upstream synaptic neuronal connections in a muscle-dependent manner.

PGC1α does not only make muscles fit

How do muscles change during muscle training or in muscle disease? Christoph Handschin and his team have been addressing this question for some years. In the past, they have already shown that the protein PGC1α plays a key role in the adaptation of the muscle by regulating the genes that cause the muscles to change accordingly to meet the more demanding requirements. When muscle is inactive or ill, only a low concentration of PGC1α is present. However, when the muscle is challenged, the PGC1α level increases. Through artificial elevation of the PGC1α concentration, it is possible to stimulate muscle endurance.

… but also the nerve connections

Now, the scientists have been able to demonstrate that the increase in muscle PGC1α concentration also improves the upstream synaptic nerve connections to the result of this feedback from muscle to the motor neuron: The health of the synapse improves and its activation pattern adapts to meet the requirements of the muscle. Until now, the influence of the muscle on the synaptic connection was primarily recognized in embryonic development. “That in adults, where the nerve and muscular systems are fully developed, not only the muscle changes due to an increase in PGC1α concentration but also a muscle-controlled improvement in the entire nerve and muscular system takes place, was completely unexpected and a great surprise to us”, says Handschin. “Our current aim is to identify the exact signal that leads to this stabilization of the synaptic connections, in order to apply this for treating muscle disorders.”

… and helps in the treatment of muscle and nerve disorders

A direct therapeutic application of the research findings in illnesses such as muscle wasting and amyotrophic lateral sclerosis (ALS) is already conceivable for Christoph Handschin. “In patients, whose muscles due to their illness are too weak to move on their own, an increase in PGC1α levels could strengthen muscles and nerves until the patients can move enough to finally do some physical therapy and to further improve their mobility”, he explains. After the pharmacological improvement of the health status of the muscles and nerves, the patient could independently continue their treatment through practicing endurance sports.

Original Citation
Anne-Sophie Arnold, Jonathan Gill, Martine Christe, Rocío Ruiz, Shawn McGuirk, Julie St-Pierre, Lucía Tabares & Christoph Handschin
Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α
Nature Communications, published 1 April 2014 | doi:10.1038/ncomms4569

Further Information
Prof. Christoph Handschin, University of Basel, Biozentrum, phone +41 61 267 23 78, email: christoph.handschin@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms4569 - Abstract
http://www.biozentrum.unibas.ch/research/groups-platforms/overview/unit/handschi... - Research Group Prof. Christoph Handschin >

Heike Sacher | Universität Basel

Further reports about: Biozentrum concentration connections disorders muscular nerves role wasting

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>