Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sporadic breast cancers start with ineffective DNA repair systems

Breast cancers that arise sporadically, rather than through inheritance of certain genes, likely start with defects of DNA repair mechanisms that allow environmentally triggered mutations to accumulate, according to researchers at the University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC and the University of Pittsburgh Cancer Institute.

The findings, reported this week in the early online edition of the Proceedings of the National Academy of Sciences, indicate that potent chemotherapy drugs that target DNA in later-stage cancers could be an effective way to treat the earliest of breast tumors.

Recent research has focused on familial breast cancers, in part because the predisposing genes have been well-characterized and women at risk can be identified, said Jean J. Latimer, Ph.D., assistant professor of obstetrics, gynecology and reproductive sciences at Pitt's School of Medicine. But these cases only comprise 15 percent of the 190,000 breast cancers that are diagnosed every year.

Research on sporadic breast cancer has involved the use of available cell lines derived from late-stage tumors, but most newly diagnosed tumors in the U.S. are stage I, the earliest form of invasive disease.

"Our team is able to grow stage I breast cancer cells – before they have spread to adjacent tissues and lymph nodes – allowing us to examine the mechanisms that underlie cancer development in people who didn't inherit a faulty gene," Dr. Latimer said. "The advent of innovative tissue engineering techniques has finally made it possible for us to culture these cells to determine what has gone wrong."

In earlier work, she and her colleagues found that breast tissue does not repair everyday damage to DNA as well as other tissues, such as skin. Ultraviolet light, for example, can cause mutations, but a sophisticated system of nucleotide excision repair (NER) proteins trolls the DNA strands to identify problems and initiate repair processes. The same system repairs damage caused by many environmental carcinogens, including tobacco smoke.

"Even in healthy breast tissue, this system is only about one-fifth as effective as it is in skin," Dr. Latimer noted. "This deficiency could set the stage for sporadic cancer development, with the risk increasing with age as DNA damage accumulates."

For the study, the researchers grew and assessed 19 sporadic, stage I breast tumors placed into culture directly from surgeries to test their NER pathways. In every case, there was a deficiency in repair capacity compared to disease-free breast tissue.

"That is a remarkably consistent feature for cancers that might otherwise seem random in their genesis," Dr. Latimer noted. "We rarely see a universal rule when it comes to breast cancer, but then until now, we have rarely studied stage I disease."

Some chemotherapy drugs work especially well on cells that exhibit reduced DNA repair, but they are typically given in later-stage disease. The new findings suggest, however, that these approaches could be effective in treating early stage disease, she noted.

Co-authors include Jennifer M. Johnson, M.D., Ph.D., Crystal M. Kelly, M.D., Ph.D., Tiffany D. Miles, Ph.D., Kelly A. Beaudrey-Rodgers, M.S., Nancy A. Lalanne, B.S., Victor G. Vogel, M.D., Amal Kanbour-Shakir, M.D., Joseph L. Kelley, M.D., Ronald R. Johnson, M.D., and Stephen G. Grant, Ph.D., all of the University of Pittsburgh.

The research was funded by the National Institutes of Health, the U.S. Department of Defense, the Pennsylvania Department of Health, the Komen for the Cure Awards, and the American Cancer Society.

Anita Srikameswaran | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>