Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sporadic breast cancers start with ineffective DNA repair systems

30.11.2010
Breast cancers that arise sporadically, rather than through inheritance of certain genes, likely start with defects of DNA repair mechanisms that allow environmentally triggered mutations to accumulate, according to researchers at the University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC and the University of Pittsburgh Cancer Institute.

The findings, reported this week in the early online edition of the Proceedings of the National Academy of Sciences, indicate that potent chemotherapy drugs that target DNA in later-stage cancers could be an effective way to treat the earliest of breast tumors.

Recent research has focused on familial breast cancers, in part because the predisposing genes have been well-characterized and women at risk can be identified, said Jean J. Latimer, Ph.D., assistant professor of obstetrics, gynecology and reproductive sciences at Pitt's School of Medicine. But these cases only comprise 15 percent of the 190,000 breast cancers that are diagnosed every year.

Research on sporadic breast cancer has involved the use of available cell lines derived from late-stage tumors, but most newly diagnosed tumors in the U.S. are stage I, the earliest form of invasive disease.

"Our team is able to grow stage I breast cancer cells – before they have spread to adjacent tissues and lymph nodes – allowing us to examine the mechanisms that underlie cancer development in people who didn't inherit a faulty gene," Dr. Latimer said. "The advent of innovative tissue engineering techniques has finally made it possible for us to culture these cells to determine what has gone wrong."

In earlier work, she and her colleagues found that breast tissue does not repair everyday damage to DNA as well as other tissues, such as skin. Ultraviolet light, for example, can cause mutations, but a sophisticated system of nucleotide excision repair (NER) proteins trolls the DNA strands to identify problems and initiate repair processes. The same system repairs damage caused by many environmental carcinogens, including tobacco smoke.

"Even in healthy breast tissue, this system is only about one-fifth as effective as it is in skin," Dr. Latimer noted. "This deficiency could set the stage for sporadic cancer development, with the risk increasing with age as DNA damage accumulates."

For the study, the researchers grew and assessed 19 sporadic, stage I breast tumors placed into culture directly from surgeries to test their NER pathways. In every case, there was a deficiency in repair capacity compared to disease-free breast tissue.

"That is a remarkably consistent feature for cancers that might otherwise seem random in their genesis," Dr. Latimer noted. "We rarely see a universal rule when it comes to breast cancer, but then until now, we have rarely studied stage I disease."

Some chemotherapy drugs work especially well on cells that exhibit reduced DNA repair, but they are typically given in later-stage disease. The new findings suggest, however, that these approaches could be effective in treating early stage disease, she noted.

Co-authors include Jennifer M. Johnson, M.D., Ph.D., Crystal M. Kelly, M.D., Ph.D., Tiffany D. Miles, Ph.D., Kelly A. Beaudrey-Rodgers, M.S., Nancy A. Lalanne, B.S., Victor G. Vogel, M.D., Amal Kanbour-Shakir, M.D., Joseph L. Kelley, M.D., Ronald R. Johnson, M.D., and Stephen G. Grant, Ph.D., all of the University of Pittsburgh.

The research was funded by the National Institutes of Health, the U.S. Department of Defense, the Pennsylvania Department of Health, the Komen for the Cure Awards, and the American Cancer Society.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>