Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Splice of Life: Proteins Cooperate to Regulate Gene Splicing

17.02.2012
Understanding how RNA binding proteins control the genetic splicing code is fundamental to human biology and disease – much like editing film can change a movie scene. Abnormal variations in splicing are often implicated in cancer and genetic neurodegenerative disorders.

In a step toward deciphering the “splicing code” of the human genome, researchers at the University of California, San Diego School of Medicine have comprehensively analyzed six of the more highly expressed RNA binding proteins collectively known as heterogeneous nuclear ribonucleoparticle (hnRNP) proteins.


UC San Diego School of Medicine
RNAs wound in a knot and bound by hnRNP proteins illustrates the intractable problem of RNA regulation addressed by Huelga et al.

This study, published online Feb 16 in Cell Press’ new open-access journal Cell Reports, describes how multiple RNA binding proteins cooperatively control the diversity of proteins in human cells by regulating the alternative splicing of thousands of genes.

In the splicing process, fragments that do not typically code for protein, called introns, are removed from gene transcripts, and the remaining sequences, called exons, are reconnected. The proteins that bind to RNA are important for the control of the splicing process, and the location where they bind dictates which pieces of the RNA are included or excluded in the final gene transcript -- in much the same fashion that removing and inserting scenes, or splicing, can alter the plot of a movie.

“By integrating vast amounts of information about these key binding proteins, and making this data widely available, we hope to provide a foundation for building predictive models for splicing and future studies in other cell types such as embryonic stem cells,” said principal investigator Gene Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine and the Institute for Genomic Medicine at UC San Diego, and a visiting professor at the Molecular Engineering Laboratory in Singapore. “If we can understand how these proteins work together and affect one another to regulate alternative splicing, it may offer important clues for rational drug design.”

The data sets highlighted in this study – derived from genome-wide methods including custom-designed splicing-sensitive microarrays, RNA sequencing and high-throughput sequencing to identify genome-wide binding sites (CLIP-seq) -- map the functional binding sites for six of the major hnRNP proteins in human cells.

“We identified thousands of binding sites and altered splicing events for these hnRNP proteins and discovered that, surprisingly these proteins bind and regulate each other and a whole network of other RNA binding proteins, suggesting that these proteins are important for the homeostasis of the cell,” said first author, NSF fellow Stephanie C. Huelga.

According to the UCSD researchers, the genes specifically targeted by the RNA binding proteins in this study are also often implicated in cancer. Yeo added that of the thousands of genomic mutations that appear in cancer, a vast majority occur in the introns that are removed during splicing; however, intronic regions are where regulatory hnRNP proteins often bind.

“Our findings show an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells. The orchestration of RNA binding proteins is not only important for the homeostasis of the cell, but – by mapping the location of binding sites and all the regulatory places in a gene – this study could reveal how disruption of the process leads to disease and, perhaps, a way to intervene.”

Additional contributors to the study include Anthony Q. Vu, Justin D. Arnold, Tiffany Y. Liang, Patrick P. Liu and Bernice Y. Yan, UCSD Cellular and Molecular Medicine; John Paul Donohue, Lily Shiue and Manuel Ares, Jr., UC Santa Cruz; Shawn Hoon and Sydney Brenner, A*STAR, Singapore.

The study was funded in part by grants from the National Institutes of Health and the UC San Diego Stem Cell Research Program.

Debra Kain | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>