Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spiral Constriction – How Dynamin Mediates Cellular Nutrient Uptake MDC Researchers Determine S

20.09.2011
Dr. Katja Fälber and Professor Oliver Daumke, structural biologists at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, together with researchers from Freie Universität (FU) Berlin, have determined the molecular structure of dynamin, a ‘wire-puller’ that mediates nutrient uptake into the cell.
Since pathogens such as HIV can also enter the body’s cells in this way, understanding the underlying molecular mechanisms can potentially open up new approaches for medical applications (Nature, DOI: 10.1038/nature10369)*.

Many nutrients pass from the blood through cell membrane channels into the body cells. However, appropriate channels do not exist for all nutrients.

For example, iron binds outside the cell to a large transport molecule and is imported by other means, via endocytosis, into the cell. The cargo-containing transport molecules bind to the cell membrane, which invaginates inward. The iron molecules along with their transporters are taken up in a small membrane bubble (vesicle) into the cell and released there.

An important ‘wire-puller’ of endocytosis is the protein molecule dynamin. And that in the most literal sense of the word: If a vesicle forms, the dynamin molecules self-assemble and form a spiral around the neck of the vesicle. Dynamin functions like a small motor: It uses the energy of the cell’s GTP to pull the spiral together, constricting the neck of the vesicle so that it detaches from the cell membrane.

The molecular details of this ‘pull’ mechanism around the vesicle neck were previously unknown. In their present study, MDC structural biologists Professor Daumke and Dr. Fälber, together with the endocytosis researcher Professor Volker Haucke and the bioinformatician Dr. Frank Noé of FU Berlin, provide fundamental insights into this process. Using X-ray diffraction analysis, they succeeded in building a structural model of dynamin. For this study it was necessary to produce protein crystals of dynamin. To achieve this, the researchers utilized the insights gained in their previous study about a dynamin-related protein. From the X-ray diffraction pattern of these crystals the researchers were then able to derive a detailed picture of dynamin. “Now that we have an idea of how the dynamin molecule is structured, we can understand at the atomic level how the molecular motor dynamin functions,” said Professor Daumke.

In addition to nutrient uptake, endocytosis is also essential for the transmission of signals between neighboring nerve cells and for the immune system. In this way, for example, macrophages engulf pathogens and make them harmless. Professor Daumke: “However, pathogens like HIV and influenza viruses utilize endocytosis to enter our body cells and to spread there. That is why it is important to gain an even more detailed understanding of the molecular ‘pull’ mechanism of dynamin during endocytosis. Then we can find potential approaches for medical applications – especially for patients with muscle and nerve disorders associated with mutations in the dynamin gene.” In future research projects funded by the German Research Foundation within the framework of the Collaborative Research Centers (SFB740 and SFB958), the MDC researchers intend to take an even closer look at dynamin. They want to find out what structural changes dynamin accomplishes when the cell’s energy carrier GTP binds to the protein and the ‘pull’ mechanism is set in motion at the vesicle neck.

*Crystal structure of nucleotide-free dynamin
Katja Faelber1, York Posor2#, Song Gao1,2#, Martin Held3#, Yvette Roske1#, Dennis Schulze1, Volker Haucke2, Frank Noé3 & Oliver Daumke1,4
1Crystallography, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
2Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
3Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany.
4Institute for Medical Physics and Biophysics, Charité, Ziegelstraße 5-9, 10117 Berlin, Germany.

#These authors contributed equally to this work.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>