Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spiral Constriction – How Dynamin Mediates Cellular Nutrient Uptake MDC Researchers Determine S

20.09.2011
Dr. Katja Fälber and Professor Oliver Daumke, structural biologists at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, together with researchers from Freie Universität (FU) Berlin, have determined the molecular structure of dynamin, a ‘wire-puller’ that mediates nutrient uptake into the cell.
Since pathogens such as HIV can also enter the body’s cells in this way, understanding the underlying molecular mechanisms can potentially open up new approaches for medical applications (Nature, DOI: 10.1038/nature10369)*.

Many nutrients pass from the blood through cell membrane channels into the body cells. However, appropriate channels do not exist for all nutrients.

For example, iron binds outside the cell to a large transport molecule and is imported by other means, via endocytosis, into the cell. The cargo-containing transport molecules bind to the cell membrane, which invaginates inward. The iron molecules along with their transporters are taken up in a small membrane bubble (vesicle) into the cell and released there.

An important ‘wire-puller’ of endocytosis is the protein molecule dynamin. And that in the most literal sense of the word: If a vesicle forms, the dynamin molecules self-assemble and form a spiral around the neck of the vesicle. Dynamin functions like a small motor: It uses the energy of the cell’s GTP to pull the spiral together, constricting the neck of the vesicle so that it detaches from the cell membrane.

The molecular details of this ‘pull’ mechanism around the vesicle neck were previously unknown. In their present study, MDC structural biologists Professor Daumke and Dr. Fälber, together with the endocytosis researcher Professor Volker Haucke and the bioinformatician Dr. Frank Noé of FU Berlin, provide fundamental insights into this process. Using X-ray diffraction analysis, they succeeded in building a structural model of dynamin. For this study it was necessary to produce protein crystals of dynamin. To achieve this, the researchers utilized the insights gained in their previous study about a dynamin-related protein. From the X-ray diffraction pattern of these crystals the researchers were then able to derive a detailed picture of dynamin. “Now that we have an idea of how the dynamin molecule is structured, we can understand at the atomic level how the molecular motor dynamin functions,” said Professor Daumke.

In addition to nutrient uptake, endocytosis is also essential for the transmission of signals between neighboring nerve cells and for the immune system. In this way, for example, macrophages engulf pathogens and make them harmless. Professor Daumke: “However, pathogens like HIV and influenza viruses utilize endocytosis to enter our body cells and to spread there. That is why it is important to gain an even more detailed understanding of the molecular ‘pull’ mechanism of dynamin during endocytosis. Then we can find potential approaches for medical applications – especially for patients with muscle and nerve disorders associated with mutations in the dynamin gene.” In future research projects funded by the German Research Foundation within the framework of the Collaborative Research Centers (SFB740 and SFB958), the MDC researchers intend to take an even closer look at dynamin. They want to find out what structural changes dynamin accomplishes when the cell’s energy carrier GTP binds to the protein and the ‘pull’ mechanism is set in motion at the vesicle neck.

*Crystal structure of nucleotide-free dynamin
Katja Faelber1, York Posor2#, Song Gao1,2#, Martin Held3#, Yvette Roske1#, Dennis Schulze1, Volker Haucke2, Frank Noé3 & Oliver Daumke1,4
1Crystallography, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
2Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
3Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany.
4Institute for Medical Physics and Biophysics, Charité, Ziegelstraße 5-9, 10117 Berlin, Germany.

#These authors contributed equally to this work.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>