Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to spell B-Y-U with DNA

18.09.2009
Researchers from Brigham Young University found how to shape customized segments of DNA into tiny letters that spell “BYU.” This new method of DNA origami will appear in the aptly titled journal Nano Letters.

The letters are about 100 nanometers in size. That’s roughly a billion times smaller than the block Y on the mountain overlooking BYU’s campus and 1/1000 the width of a human hair.

The team’s larger pursuit is to design nanoscale shapes for electrical circuitry and make tiny – yet inexpensive – computer chips. For more on that endeavor read this story.

DNA origami came on the scene a few years ago when a computer scientist at Caltech wove strands of DNA into smiley faces and other shapes. But until now scientists had to hunt for viruses and microbes whose DNA strands were the right length for the particular task. That’s like building a log cabin without a saw: Instead of cutting the trees down to size, you have to size your cabin to the trees available.

The BYU researchers instead replicate DNA to make strands precisely as long or as short as they need.

BYU chemistry professor Adam Woolley authored the paper with three of his students, Elisabeth Pound, Jeffrey Ashton and Hector Becerril. Ashton is an undergraduate.

“I was blown away when the students were able to make B’s,” Woolley said. “Right angle shapes, that’s one thing. But to make something with curves and multiple intersections, I thought ‘Wow, that is really cool.’”

The work is funded by a $1 million grant from the National Science Foundation to advance the field of nanoelectronics.

“This very quickly went from the initial design of a simple rectangle shape to more sophisticated branching,” Woolley said. “It’s a testament to the quality of graduate students and undergraduates we have here in our department and at BYU in general.”

Joe Hadfield | EurekAlert!
Further information:
http://www.byu.edu

Further reports about: B-Y-U BYU DNA DNA origami DNA strand Woolley electrical circuitry

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>