Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Need for Speed: High-speed Measurements of Molecular Motion in the Cell Nucleus

03.12.2012
Heidelberg scientists study interactions between proteins and DNA in living cells

Using a new measurement technique, Heidelberg researchers have succeeded in tracking interactions between proteins and DNA in the cell nucleus at a resolution of 1/1000 of a second.


Microscopy images after bleaching the fluorescence in a circular or rectangular region. The dark “shadows” represent the bleached proteins that moved as the image was being recorded.

Picture credits: Fabian Erdel and Karsten Rippe

They were able to measure the binding of highly specialised protein complexes that specifically change the spatial structure of the genetic information, thereby controlling the readout of the DNA information. The work of Dr. Karsten Rippe and his team was carried out at the BioQuant Center of Heidelberg University and the German Cancer Research Center.

Their research has demonstrated that the positioning of nucleosomes – complexes of DNA and specialised proteins – is a precisely regulated molecular process. Aberrant regulation can be linked to several types of cancer. The results of these studies were published in the journal PNAS.

In the human genome, the DNA strands are wrapped around specific packaging proteins, the histones. Located between these complexes, called nucleosomes, are histone-free DNA sequences that connect the nucleosomes, much like a pearl necklace. “Activating a gene requires freely accessible DNA. If the corresponding DNA is occluded in the nucleosome, the gene is often turned off”, explains Dr. Rippe.

“Hence, the nucleosome positions determine the readout pattern of the DNA sequence. The free DNA between two nucleosomes is more easily accessible than the DNA sequences in a nucleosome.” Molecular machines called chromatin remodelers can use energy to move nucleosomes along the DNA chain. Thus they establish the readout pattern that, along with other factors, determines the active DNA programme of the cell.

Rippe’s team of scientists are using fluorescence microscopy to investigate how the chromatin remodelers control the readout of the genetic information. With it they were able to measure that most of the approx. one million chromatin remodelers in the human cell transiently bind to nucleosomes to test whether all the approx. 30 million nucleosomes are at the right position. A new way of measurement was needed to understand how these molecular machines work. “We had to record short binding events at a resolution of 1/1000 of a second and at the same time detect the rare events with a binding time of several seconds or even minutes”, says Karsten Rippe. Doctoral student Fabian Erdel came up with an idea that led to “Pixel-wise Photobleaching Profile Evolution Analysis”, or 3PEA, which can be used to take such measurements in living cells.

In his experiments, Fabian Erdel used a laser beam to extinguish the artificial fluorescent tag attached to the chromatin remodelers. He noticed that the “bleached” proteins produced a “shadow” when they moved while the image was being recorded. The shape of this shadow depended on how much the movement of the chromatin remodelers slowed down due to binding to nucleosomes. “It was not easy calculating duration times of binding from the shadow image, but it was worth the effort. Our method has exciting new applications because we can use it to measure the binding of proteins in living cells very quickly and precisely”, remarks Fabian Erdel.

Using 3PEA measurements, the researchers demonstrated that an individual chromatin remodeler travels through the entire cell nucleus within a single second testing more than 300 nucleosomes – mostly without becoming active. Only occasionally the molecular machine would bind to a nucleosome for several seconds or even minutes, causing it to shift position on the DNA. Dr. Rippe and his team next want to decode signals that activate the chromatin remodelers at certain locations on the genome.

For more information, go to http://malone.bioquant.uni-heidelberg.de.

Original publication:
F. Erdel, K. Rippe: Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis, PNAS, 20 November 2012, vol. 109, no. 47, E3221-3230 (online 5 November 2012, doi:10.1073/pnas.1209579109).

Contact:
Dr. Karsten Rippe
BioQuant, phone: +49 (0)6221 54-51376
karsten.rippe@bioquant.uni-heidelberg.de

Heidelberg University
Communications and Marketing
Press Office, phone: +49 (0)6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://malone.bioquant.uni-heidelberg.de
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>