Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Need for speed

19.03.2012
Molecular ticket determines RNA's destination and speed inside egg cell

Like any law-abiding train passenger, a molecule called oskar RNA carries a stamped ticket detailing its destination and form of transport, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found.


Oskar RNA (red) is transported to the posterior pole in a normal fruit fly egg cell (left), but not in an oocyte with a mutated SOLE tag (right).
Credit: EMBL/S.Gosh

They show that for this molecule, moving in the right direction isn't enough: speed is of the essence. Their study, published online today in Nature Structural & Molecular Biology, also provides clues as to how a single molecule could receive tickets for different destinations, depending on what type of cell it is in.

For a fruit fly embryo to develop properly, oskar RNA produced by the mother has to enter the egg cell, or oocyte, as it matures, and be taken to one of its ends – the posterior pole. Researchers in Anne Ephrussi's group at EMBL have now found that this movement is more complicated than it seemed. When oskar is processed for transport by a mechanism called splicing, two different tags – SOLE and EJC – are attached to it, next to each other, at a specific spot.

Ephrussi and colleagues found that both tags have to be in place for oskar to reach the right destination. Together, they seem to form a ticket that marks oskar for transport to the posterior pole, differentiating it from the many other RNAs that enter the oocyte bound for different destinations.

When they genetically altered the SOLE tag, the scientists found that oskar didn't go to the oocyte's posterior pole, as it should. But surprisingly, it did still move, and seemingly in the right direction. The problem, the researchers realised, was that oskar is racing towards a moving target.

As the oocyte grows, it becomes longer, in effect taking the posterior pole further and further away as oskar is carried towards it. With a defective SOLE tag, oskar seemed unable to move fast enough to overcome the oocyte's growth. So somehow this 'ticket' affects the speed of transport, too.

Ephrussi and colleagues are now investigating how SOLE and EJC interact with each other, and how they might influence the cellular machinery that transports oskar. The scientists would also like to explore an interesting possibility raised by their current findings. They discovered that the SOLE tag is only formed if the RNA molecule is spliced.

Since some RNAs can be spliced at different spots along their length, this means the same RNA could potentially be issued with tickets for different destinations – for instance, in different cell types – depending on which parts of it are spliced.

Sonia Furtado Neves | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>