Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Need for speed

19.03.2012
Molecular ticket determines RNA's destination and speed inside egg cell

Like any law-abiding train passenger, a molecule called oskar RNA carries a stamped ticket detailing its destination and form of transport, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found.


Oskar RNA (red) is transported to the posterior pole in a normal fruit fly egg cell (left), but not in an oocyte with a mutated SOLE tag (right).
Credit: EMBL/S.Gosh

They show that for this molecule, moving in the right direction isn't enough: speed is of the essence. Their study, published online today in Nature Structural & Molecular Biology, also provides clues as to how a single molecule could receive tickets for different destinations, depending on what type of cell it is in.

For a fruit fly embryo to develop properly, oskar RNA produced by the mother has to enter the egg cell, or oocyte, as it matures, and be taken to one of its ends – the posterior pole. Researchers in Anne Ephrussi's group at EMBL have now found that this movement is more complicated than it seemed. When oskar is processed for transport by a mechanism called splicing, two different tags – SOLE and EJC – are attached to it, next to each other, at a specific spot.

Ephrussi and colleagues found that both tags have to be in place for oskar to reach the right destination. Together, they seem to form a ticket that marks oskar for transport to the posterior pole, differentiating it from the many other RNAs that enter the oocyte bound for different destinations.

When they genetically altered the SOLE tag, the scientists found that oskar didn't go to the oocyte's posterior pole, as it should. But surprisingly, it did still move, and seemingly in the right direction. The problem, the researchers realised, was that oskar is racing towards a moving target.

As the oocyte grows, it becomes longer, in effect taking the posterior pole further and further away as oskar is carried towards it. With a defective SOLE tag, oskar seemed unable to move fast enough to overcome the oocyte's growth. So somehow this 'ticket' affects the speed of transport, too.

Ephrussi and colleagues are now investigating how SOLE and EJC interact with each other, and how they might influence the cellular machinery that transports oskar. The scientists would also like to explore an interesting possibility raised by their current findings. They discovered that the SOLE tag is only formed if the RNA molecule is spliced.

Since some RNAs can be spliced at different spots along their length, this means the same RNA could potentially be issued with tickets for different destinations – for instance, in different cell types – depending on which parts of it are spliced.

Sonia Furtado Neves | EurekAlert!
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>