Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-specific and Specific RNA Binding Proteins Found to be Fundamentally Similar

09.10.2013
Nature Study Shows Distinct Behavior of Proteins Reflects Common Biochemical Principles

Researchers from Case Western Reserve University School of Medicine have found unexpected similarities between proteins that were thought to be fundamentally different.

The team studied how proteins bind to RNA, a process required for gene expression. It is known that some proteins only bind RNAs with certain sequences. Other proteins have been deemed “non-specific” because they interact with RNAs at seemingly random places. But the Case Western Reserve team has published a new study in Nature showing that non-specific proteins actually do have the ability to be specific about where they bind to RNA – seeking out and binding with particular sequences of nucleotides.

“There seems to be no such thing as specific or non-specific proteins; in essence, they are all specific. But they use their specificity differently,” said Eckhard Jankowsky, PhD, co-senior author and professor in the Center for RNA Molecular Biology at the School of Medicine. “Our findings advance understanding of how proteins and nucleic acids control gene expression, which leads to insights into how this control is lost or altered in cancer, viral infections and other diseases.”

The Case Western Reserve research team developed a new method for measuring proteins binding to thousands of different RNA molecules, called High Throughput Sequencing Kinetics (HTS-KIN). Applicable to many biologic fields, the approach allows researchers to analyze large numbers of mutations at protein binding sites in DNA or RNA quickly. HTS-KIN allows scientists to complete experiments in days that previously would have taken years to finish.

“By combining traditional biochemical methods with next-generation sequencing technology, we can now do one experiment with thousands of different RNAs, while before we were limited to analyzing only one RNA molecule at a time,” said Michael E. Harris, PhD, co-senior author and associate professor of biochemistry at the School of Medicine.

Defects in the interactions between RNA and binding proteins underlie numerous human diseases including cancer and neurodegenerative diseases. This insight into how molecules interact is a critical step toward the development of novel strategies for treating human disease.

“The Case Western Reserve researchers’ new findings may suggest ways to design drugs targeting a whole class of proteins that bind to DNA and RNA at sites lacking specific recognition sequences, which would guide them into place. Previously, we didn't understand how these proteins recognized where to bind to DNA or RNA, which hampered the design of drugs targeting that activity," said Oleg Barski, PhD, of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the research. "The research also shows that next-generation sequencing technology can deepen our understanding of these proteins and how they control the inner workings of cells."

Jankowsky and Harris utilized HTS-KIN to analyze how weakly or tightly large numbers of different RNAs bind to a particular protein. Although non-specific proteins were predicted to bind to all RNA sequences with similar affinity, the researchers found the same broad range of binding affinities for the non-specific protein that typically appear for a specific protein.

The authors theorize that the two types of proteins may not differ fundamentally, but rather use different parts of their affinity spectrum in order to express genes correctly. While specific proteins can connect with their preferred sequences among a cell’s many RNA molecules, the preferred RNA sequences of non-specific proteins are not created by the cell. As a result, non-specific proteins are left to bind to the available RNAs with similar affinity for many different RNAs.

“Essentially, each protein has binding preferences. However, the non-specific proteins can bind only to those sequences that are made available to them, whereas the specific proteins are able to bind to their ‘first choice’ sequences,” added Jankowsky.

This study was supported by grants from National Institutes of Health: GM067700, GM099720, GM056740, GM096000, T32GM008056 and UL1RR024989.

View the Nature paper at link: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12543.html.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report's "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>