Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-specific and Specific RNA Binding Proteins Found to be Fundamentally Similar

09.10.2013
Nature Study Shows Distinct Behavior of Proteins Reflects Common Biochemical Principles

Researchers from Case Western Reserve University School of Medicine have found unexpected similarities between proteins that were thought to be fundamentally different.

The team studied how proteins bind to RNA, a process required for gene expression. It is known that some proteins only bind RNAs with certain sequences. Other proteins have been deemed “non-specific” because they interact with RNAs at seemingly random places. But the Case Western Reserve team has published a new study in Nature showing that non-specific proteins actually do have the ability to be specific about where they bind to RNA – seeking out and binding with particular sequences of nucleotides.

“There seems to be no such thing as specific or non-specific proteins; in essence, they are all specific. But they use their specificity differently,” said Eckhard Jankowsky, PhD, co-senior author and professor in the Center for RNA Molecular Biology at the School of Medicine. “Our findings advance understanding of how proteins and nucleic acids control gene expression, which leads to insights into how this control is lost or altered in cancer, viral infections and other diseases.”

The Case Western Reserve research team developed a new method for measuring proteins binding to thousands of different RNA molecules, called High Throughput Sequencing Kinetics (HTS-KIN). Applicable to many biologic fields, the approach allows researchers to analyze large numbers of mutations at protein binding sites in DNA or RNA quickly. HTS-KIN allows scientists to complete experiments in days that previously would have taken years to finish.

“By combining traditional biochemical methods with next-generation sequencing technology, we can now do one experiment with thousands of different RNAs, while before we were limited to analyzing only one RNA molecule at a time,” said Michael E. Harris, PhD, co-senior author and associate professor of biochemistry at the School of Medicine.

Defects in the interactions between RNA and binding proteins underlie numerous human diseases including cancer and neurodegenerative diseases. This insight into how molecules interact is a critical step toward the development of novel strategies for treating human disease.

“The Case Western Reserve researchers’ new findings may suggest ways to design drugs targeting a whole class of proteins that bind to DNA and RNA at sites lacking specific recognition sequences, which would guide them into place. Previously, we didn't understand how these proteins recognized where to bind to DNA or RNA, which hampered the design of drugs targeting that activity," said Oleg Barski, PhD, of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the research. "The research also shows that next-generation sequencing technology can deepen our understanding of these proteins and how they control the inner workings of cells."

Jankowsky and Harris utilized HTS-KIN to analyze how weakly or tightly large numbers of different RNAs bind to a particular protein. Although non-specific proteins were predicted to bind to all RNA sequences with similar affinity, the researchers found the same broad range of binding affinities for the non-specific protein that typically appear for a specific protein.

The authors theorize that the two types of proteins may not differ fundamentally, but rather use different parts of their affinity spectrum in order to express genes correctly. While specific proteins can connect with their preferred sequences among a cell’s many RNA molecules, the preferred RNA sequences of non-specific proteins are not created by the cell. As a result, non-specific proteins are left to bind to the available RNAs with similar affinity for many different RNAs.

“Essentially, each protein has binding preferences. However, the non-specific proteins can bind only to those sequences that are made available to them, whereas the specific proteins are able to bind to their ‘first choice’ sequences,” added Jankowsky.

This study was supported by grants from National Institutes of Health: GM067700, GM099720, GM056740, GM096000, T32GM008056 and UL1RR024989.

View the Nature paper at link: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12543.html.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report's "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>