Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Non-specific and Specific RNA Binding Proteins Found to be Fundamentally Similar

Nature Study Shows Distinct Behavior of Proteins Reflects Common Biochemical Principles

Researchers from Case Western Reserve University School of Medicine have found unexpected similarities between proteins that were thought to be fundamentally different.

The team studied how proteins bind to RNA, a process required for gene expression. It is known that some proteins only bind RNAs with certain sequences. Other proteins have been deemed “non-specific” because they interact with RNAs at seemingly random places. But the Case Western Reserve team has published a new study in Nature showing that non-specific proteins actually do have the ability to be specific about where they bind to RNA – seeking out and binding with particular sequences of nucleotides.

“There seems to be no such thing as specific or non-specific proteins; in essence, they are all specific. But they use their specificity differently,” said Eckhard Jankowsky, PhD, co-senior author and professor in the Center for RNA Molecular Biology at the School of Medicine. “Our findings advance understanding of how proteins and nucleic acids control gene expression, which leads to insights into how this control is lost or altered in cancer, viral infections and other diseases.”

The Case Western Reserve research team developed a new method for measuring proteins binding to thousands of different RNA molecules, called High Throughput Sequencing Kinetics (HTS-KIN). Applicable to many biologic fields, the approach allows researchers to analyze large numbers of mutations at protein binding sites in DNA or RNA quickly. HTS-KIN allows scientists to complete experiments in days that previously would have taken years to finish.

“By combining traditional biochemical methods with next-generation sequencing technology, we can now do one experiment with thousands of different RNAs, while before we were limited to analyzing only one RNA molecule at a time,” said Michael E. Harris, PhD, co-senior author and associate professor of biochemistry at the School of Medicine.

Defects in the interactions between RNA and binding proteins underlie numerous human diseases including cancer and neurodegenerative diseases. This insight into how molecules interact is a critical step toward the development of novel strategies for treating human disease.

“The Case Western Reserve researchers’ new findings may suggest ways to design drugs targeting a whole class of proteins that bind to DNA and RNA at sites lacking specific recognition sequences, which would guide them into place. Previously, we didn't understand how these proteins recognized where to bind to DNA or RNA, which hampered the design of drugs targeting that activity," said Oleg Barski, PhD, of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the research. "The research also shows that next-generation sequencing technology can deepen our understanding of these proteins and how they control the inner workings of cells."

Jankowsky and Harris utilized HTS-KIN to analyze how weakly or tightly large numbers of different RNAs bind to a particular protein. Although non-specific proteins were predicted to bind to all RNA sequences with similar affinity, the researchers found the same broad range of binding affinities for the non-specific protein that typically appear for a specific protein.

The authors theorize that the two types of proteins may not differ fundamentally, but rather use different parts of their affinity spectrum in order to express genes correctly. While specific proteins can connect with their preferred sequences among a cell’s many RNA molecules, the preferred RNA sequences of non-specific proteins are not created by the cell. As a result, non-specific proteins are left to bind to the available RNAs with similar affinity for many different RNAs.

“Essentially, each protein has binding preferences. However, the non-specific proteins can bind only to those sequences that are made available to them, whereas the specific proteins are able to bind to their ‘first choice’ sequences,” added Jankowsky.

This study was supported by grants from National Institutes of Health: GM067700, GM099720, GM056740, GM096000, T32GM008056 and UL1RR024989.

View the Nature paper at link:

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report's "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Jessica Studeny | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>