Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species distribution models are of only limited value for predicting future mammal distributions

17.12.2009
Competition plays a decisive role in climate change adaptation

Species distribution models are of only limited use in predicting the future distribution of mammals. This is the finding of a study of the climate niches of 140 indigenous European mammals. The researchers analysed data on species distribution, climate, land cover and topography, as well as the phylogenetic information of the species.

Judging by the large differences in climate niches even for closely related species, mammals seem to adapt fast to changing climatic conditions. This in turn makes predictions based on current distributions unreliable. Writing in Biology Letters, a journal of the British Royal Society, scientists from the Helmholtz Centre for Environmental Research (UFZ) say that since many mammals around the world are endangered by the loss of their habitats and by chemicals and traffic, climate change is just one of many threats.

In their study, the researchers produced distribution models for European mammals and calculated the climate niche overlap. These show under which climate conditions a species currently occurs. Then they compared the climate niche distance and the phylogenetic distance to the species' closest relative. The niche overlap was much less than one would have expected from the phylogenetic information. For example, species such as Greater Mouse-Eared Bat (Myotis myotis) and Lesser Mouse-Eared Bat (Myotis blythii), Beech Marten (Martes foina) and European Pine Marten (Martes martes) or Iberian hare (Lepus granatensis) and European Hare (Lepus europaeus) are closely related, but seem to occupy different Climate niches.

"Our analysis points to a high degree of climate flexibility – regardless of phylogenetic distance," explains Dr Carsten Dormann of the UFZ. "Competition between closely related species has ensured that they currently occupy different climate niches. This does not appear to require slow evolutionary adaptations, but can be achieved within the physiological constraints of the species. The realized climate niche currently occupied is therefore probably only a small part of the 'fundamental' niche." Mammals can occupy broader fundamental climate niches than insects or plants because, as endothermic organisms, they are better able to buffer variations in climate: "We suspect that phylogenetic distance will play a greater role in reptiles and insects." Moreover, the niche overlap is lower among lagomorphs, rodents and insectivores than among bats and carnivores. This indicates that mobile species are better able to avoid competition from related species.

With its expertise, the UFZ plays a part in researching the consequences of climate change and in developing adaptation strategies. You can find more on this in the special issue of the UFZ newsletter entitled "On the case of climate change" at http://www.ufz.de/index.php?en=10690

Publication: Dormann, C.F., Gruber, B., Winter, M., Hermann, D. (2009). Evolution of climate niches in European mammals. Biology Letters http://rsbl.royalsocietypublishing.org/content/early/2009/10/09/rsbl.2009.

0688.full.pdf+html

More Informationen:
Dr. Carsten Dormann/ Dr. Bernd Gruber/ Dr. Martin Winter
Helmholtz Centre for Environmental Research (UFZ)
Phone: +49-341--235-1946, -1948 bzw. 0345-558-5316
http://www.ufz.de/index.php?en=4205
http://www.ufz.de/index.php?en=1902
http://www.ufz.de/index.php?en=7081
or
Tilo Arnhold (UFZ press officer)
Phone: +49-341-235-1269
Email: presse@ufz.de
Links: Environmental law and adaptation pressure
In: UFZ Special: On the case of climate change (p.29) http://www.ufz.de/index.php?en=10690

At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 930 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 28,000 employees in 15 research centres and an annual budget of around EUR 2.4 billion, the Helmholtz Association is Germany's largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | EurekAlert!
Further information:
http://www.ufz.de

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>