Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species distribution models can exaggerate differences in environmental requirements

15.04.2010
Separate species that live in radically different environments don't necessarily also have different ecological niches. This is the finding of a study investigating the accuracy of current statistical tests that use models of geographic distributions to infer changes in environmental requirements.

In a new study published in the journal Systematic Biology, a model simulating the distributions of two imaginary species with identical environmental requirements, or ecological niches, was created. The model was tested to determine whether a variety of ecological niche modeling methods would correctly infer that the environmental requirements of the two species were identical.

In cases where environments were similar or only moderately different, many tests correctly inferred that the environmental requirements of two species were identical, but in the case of radically different environments, the results were biased toward suggesting different environmental requirements.

"If you have two separate populations that occupy different environments, what the study shows is that under some conditions, that observation is really useful and strongly suggests, for example, that you could re-introduce one population into the range of another," said the study's author William Godsoe, a postdoctoral fellow at the National Institute for Mathematical and Biological Synthesis (NIMBioS), an NSF-supported math and biology institute at the University of Tennessee, Knoxville.

"But the fact that the two populations live in different environments could be a trivial observation and lead to erroneous conclusions. For example, you might infer that the two populations have different environmental requirements, suggesting that reintroducing one species into the other wouldn't work, when in fact it could," Godsoe said.

The findings have important implications for understanding the relationship between the environmental requirements of a species—its niche—and its geographic distribution.

"There is a growing interest in using data on the geographic distributions of a species. This study clarifies the conditions under which distribution data can mislead us, and in the future, this might help us make better management decisions about a species," Godsoe explained.

The National Institute for Mathematical and Biological Synthesis (NIMBioS) brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture with additional support from The University of Tennessee, Knoxville.

Publication: Godsoe W. 2010. Regional Variation Exaggerates Ecological Divergence in Niche Models. Systematic Biology 59: 298-306. http://sysbio.oxfordjournals.org/cgi/content/abstract/59/3/298

Catherine Crawley | EurekAlert!
Further information:
http://www.nimbios.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>