Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New species discovered on the Great Barrier Reef

08.03.2010
Between the grains of sand on the sea floor there is an unknown and unexplored world. Pierre De Wit at Gothenburg University knows this well, and has found new animal species on the Great Barrier Reef, in New Caledonia and in the sea off the Gullmarsfjord in the Swedish county of Bohuslän.

The layer of sand on ocean floor is home to a large part of the vast diversity of marine species. Species representing almost all classes of marine animals live here. The genus Grania, which belongs to the class of annelid worms Clitellata, is one of them.


The new species of Grania discovered off the Gullmarsfjord. Photograph: Pierre De Wit

Grania the globetrotter
Grania is a worm around two centimetres in length and mostly white, which is encountered in marine sand throughout the world, from the tidal zone to deep down in the ocean. The researcher Pierre De Wit, at the Department of Zoology of the University of Gothenburg, is analysing exactly how many species of Grania there are and how they are related to other organisms.
Four new species
De Wit has conducted studies at the Great Barrier Reef in Australia, where he and his colleagues have found four entirely new species of the Grania worm. One of them is the beautifully green-coloured Grania colorata.

"These worms are usually colourless or white, and we have not been able to work out why this particular species is green," says De Wit.

Separate history
De Wit has also found a previously unknown worm in Scandinavia, dubbed Grania occulta, which can only be distinguished from a previously known species by DNA. The worms' genetics show that the evolutionary history of the two species is in fact entirely separate, and that one of them is actually more closely related to a species that looks completely different.
Important knowledge
"Species that were previously regarded as the same may prove to have a completely different function in the ecosystem, and have different tolerance of environmental toxins, for example. It is obviously important to know this in order to be able to take the right action to protect our fauna," says de Wit.

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>