Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specially-bred mice help target an annual outbreak: the flu

22.02.2012
As part of a national collaboration, Oregon Health & Science University researchers are studying specially bred mice that are more like humans than ever before when it comes to genetic variation. Through these mice, the researchers hope to better understand and treat an infectious disease that plagues us year in and year out: the flu.

The scientists aim to determine why some people suffer serious illness and even death when infected with influenza while others suffer only mild to moderate symptoms. The research is published in a special joint issue of the journals Genetics and G3: Genes, Genomes, Genetics, both publications of the Genetics Society of America.

The research was conducted within the Pacific Northwest Regional Center for Excellence (PNWRCE) for Biodefense and Emerging Infectious Diseases, a consortium of investigators with extensive expertise, and basic and translational research capacity directed at a broad range of pathogens. The cooperative effort has the goal of combating emerging or re-emerging infectious diseases that pose a serious threat to human health. The director of the PNWRCE is Jay Nelson, Ph.D., the founder and director of the Vaccine and Gene Therapy Institute at OHSU.

For decades, mice have played a key role in developing new treatments from the discovery of penicillin to the creation of polio vaccine. Because mice studied in labs are bred in a controlled manner, they are often genetically identical. Most of the time this is beneficial. The lack of genetic variation increases reproducibility and can help researchers more quickly determine a contributing factor to disease, but research on more complex diseases calls for mice to be more like humans who are genetically diverse. That's where this research project differs from many others.

The researchers are studying mice from the Collaborative Cross Program. Because these mice more closely reflect the genetic variation of humans, they may be the key to understanding some of today's most common, and most complex, diseases. In this case, the specially bred mice were used to study the varying immune response to the annual influenza outbreak.

In this research project, the scientists studied 44 groups of flu-infected mice that varied genetically. Due to this variation, the mouse reaction to influenza varied greatly, just as it does in the human population. The researchers then noted genetic differences that may have caused the variety of disease responses. Their ongoing work is to more clearly identify which genes cause these differences.

"Each year, annual influenza epidemics result in about 3 million to 5 million cases of severe illness," explained Shannon McWeeney, Ph.D., an associate professor of biostatistics and bioinformatics and head of the Division of Bioinformatics and Computational Biology at OHSU. "We see a broad spectrum of response to influenza infection ranging from patients with minor symptoms to the estimated 250,000 to 500,000 deaths worldwide."

"We want to understand what genetic factors influence this wide-ranging response. More importantly, with a better understanding of the genetic influence of disease response, we believe we can help in the development of better, safer vaccines that can target the most vulnerable population: the sick, elderly and young. We also want to determine if the genetic factors that impact flu response also play a role in the varying responses to other diseases. If so, this new research method could have a much broader impact," McWeeney said.

The National Institute of Allergy and Infectious Diseases funded this research (5U54AI081680).

About OHSU (www.ohsu.edu)

Oregon Health & Science University is the state's only health and research university, and only academic health center. As Portland's largest employer and the fourth largest in Oregon (excluding government), OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. OHSU serves patients from every corner of the state and is a conduit for learning for more than 4,300 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>