Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specialized regulatory T cell stifles antibody production centers

26.07.2011
Discovery has potential implications for cancer, autoimmune disease

A regulatory T cell that expresses three specific genes shuts down the mass production of antibodies launched by the immune system to attack invaders, a team led by scientists at The University of Texas MD Anderson Cancer Center reported online in the journal Nature Medicine.

"Regulatory T cells prevent unwanted or exaggerated immune system responses, but the mechanism by which they accomplish this has been unclear," said paper senior author Chen Dong, Ph.D., professor in MD Anderson's Department of Immunology and director of the Center for Inflammation and Cancer.

"We've identified a molecular pathway that creates a specialized regulatory T cell, which suppresses the reaction of structures called germinal centers. This is where immune system T cells and B cells interact to swiftly produce large quantities of antibodies," Dong said.

The discovery of the germinal center off-switch, which comes two years after Dong and colleagues identified the mechanisms underlying a helper T cell that activates the centers, has potential implications for cancer and autoimmune diseases.

"In some types of cancer, the presence of many regulatory T cells is associated with poor prognosis," Dong said. "The theory is those cells suppress an immune system response in the tumor's microenvironment that otherwise might have attacked the cancer."

However, in B cell lymphomas, overproliferation and mutation of B cells are the problems, Dong said. Hitting the regulatory T cell off-switch might help against lymphomas and autoimmune diseases, while blocking it could permit an immune response against other cancers.

Antibody production central

Germinal centers are found in the lymph nodes and the spleen. They serve as gathering points for B and T cell lymphocytes, infection-fighting white blood cells.

When the adaptive immune system detects an invading bacterium or virus, B cells present a piece of the invader, an antigen, to T cells. The antigen converts a naïve T cell to a helper T cell that secretes cytokines, which help the B cells expand and differentiate into specialized antibodies to destroy the intruder.

"Germinal centers have mostly B cells with a few helper T cells to regulate them. The B cells mutate to make high-affinity antibodies and memory B cells for long-term immunity. The cell population in the germinal center structures replicates in an average of several hours, one of the fastest rates of cell replication known in mammals," Dong said.

Tracking down specialized T cell

In the Nature Medicine paper, Dong and colleagues found that a subgroup of regulatory T cells that expresses two genes, Bcl-6 and CXCR5, moves into germinal centers in both mice and humans, where they have access to B cells.

(Bcl-6 produces a protein called a transcription factor, which moves into the cell nucleus to regulate other genes. CXCR5 is a receptor protein for a signaling molecule called CXCL13.)

They also found that the Bcl-6/CXCR5 T cells aren't produced in the thymus, with other T cells, but are generated by regulatory T cell precursor cells that express Foxp3, another transcription factor.

Knocking out the regulatory T cells that express all three proteins in mice resulted in increased germinal center production of antibodies. They named this key T cell the T follicular regulatory cell, or Tfr.

In a 2009 paper in the journal Science, the researchers found that naïve T cells that expressed Bcl-6 and CXCR5 also gathered in the B cell zone of germinal centers. Expression of Bcl6 converted the T cell into a T follicular helper (Tfh) cell that launches antibody production in the germinal centers.

With Tfr turning germinal centers off and Tfh turning them on, we could potentially regulate antibody production, Dong noted. Increasing Tfr production could be a new approach to treating autoimmune inflammatory disorders, such as lupus and rheumatoid arthritis.

The team's research was funded by grants from the National Institutes of Health, the Leukemia and Lymphoma Society, MD Anderson, the American Heart Association, Doris Duke Charitable Foundation Clinical Scientist Development Award and the China Ministry of Science and Technology Protein Science Key Research Project.

Co-authors with Dong are first author Yeonseok Chung, Ph.D., Shinya Tanaka, Ph.D., Roza Nurieva, Ph.D., Gustavo Martinez, Yi-Hong Wang and Joseph Reynolds, Ph.D., of MD Anderson's Department of Immunology and the Center for Cancer Immunology; Chung also is with The University of Texas Health Science Center at Houston Institute of Molecular Medicine; Seema Rawal and Sattva Neelapu, M.D., of MD Anderson's Department of Lymphoma and Myeloma, also of the Center for Cancer Immunology; and Ziao-hui Zhou, M.D., Hui-min Fan, M.D., and Zhong-ming Liu, M.D., of Shanghai Dong Fang Hospital, Shanghai, China.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For eight of the past 10 years, including 2011, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>