Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specialized regulatory T cell stifles antibody production centers

26.07.2011
Discovery has potential implications for cancer, autoimmune disease

A regulatory T cell that expresses three specific genes shuts down the mass production of antibodies launched by the immune system to attack invaders, a team led by scientists at The University of Texas MD Anderson Cancer Center reported online in the journal Nature Medicine.

"Regulatory T cells prevent unwanted or exaggerated immune system responses, but the mechanism by which they accomplish this has been unclear," said paper senior author Chen Dong, Ph.D., professor in MD Anderson's Department of Immunology and director of the Center for Inflammation and Cancer.

"We've identified a molecular pathway that creates a specialized regulatory T cell, which suppresses the reaction of structures called germinal centers. This is where immune system T cells and B cells interact to swiftly produce large quantities of antibodies," Dong said.

The discovery of the germinal center off-switch, which comes two years after Dong and colleagues identified the mechanisms underlying a helper T cell that activates the centers, has potential implications for cancer and autoimmune diseases.

"In some types of cancer, the presence of many regulatory T cells is associated with poor prognosis," Dong said. "The theory is those cells suppress an immune system response in the tumor's microenvironment that otherwise might have attacked the cancer."

However, in B cell lymphomas, overproliferation and mutation of B cells are the problems, Dong said. Hitting the regulatory T cell off-switch might help against lymphomas and autoimmune diseases, while blocking it could permit an immune response against other cancers.

Antibody production central

Germinal centers are found in the lymph nodes and the spleen. They serve as gathering points for B and T cell lymphocytes, infection-fighting white blood cells.

When the adaptive immune system detects an invading bacterium or virus, B cells present a piece of the invader, an antigen, to T cells. The antigen converts a naïve T cell to a helper T cell that secretes cytokines, which help the B cells expand and differentiate into specialized antibodies to destroy the intruder.

"Germinal centers have mostly B cells with a few helper T cells to regulate them. The B cells mutate to make high-affinity antibodies and memory B cells for long-term immunity. The cell population in the germinal center structures replicates in an average of several hours, one of the fastest rates of cell replication known in mammals," Dong said.

Tracking down specialized T cell

In the Nature Medicine paper, Dong and colleagues found that a subgroup of regulatory T cells that expresses two genes, Bcl-6 and CXCR5, moves into germinal centers in both mice and humans, where they have access to B cells.

(Bcl-6 produces a protein called a transcription factor, which moves into the cell nucleus to regulate other genes. CXCR5 is a receptor protein for a signaling molecule called CXCL13.)

They also found that the Bcl-6/CXCR5 T cells aren't produced in the thymus, with other T cells, but are generated by regulatory T cell precursor cells that express Foxp3, another transcription factor.

Knocking out the regulatory T cells that express all three proteins in mice resulted in increased germinal center production of antibodies. They named this key T cell the T follicular regulatory cell, or Tfr.

In a 2009 paper in the journal Science, the researchers found that naïve T cells that expressed Bcl-6 and CXCR5 also gathered in the B cell zone of germinal centers. Expression of Bcl6 converted the T cell into a T follicular helper (Tfh) cell that launches antibody production in the germinal centers.

With Tfr turning germinal centers off and Tfh turning them on, we could potentially regulate antibody production, Dong noted. Increasing Tfr production could be a new approach to treating autoimmune inflammatory disorders, such as lupus and rheumatoid arthritis.

The team's research was funded by grants from the National Institutes of Health, the Leukemia and Lymphoma Society, MD Anderson, the American Heart Association, Doris Duke Charitable Foundation Clinical Scientist Development Award and the China Ministry of Science and Technology Protein Science Key Research Project.

Co-authors with Dong are first author Yeonseok Chung, Ph.D., Shinya Tanaka, Ph.D., Roza Nurieva, Ph.D., Gustavo Martinez, Yi-Hong Wang and Joseph Reynolds, Ph.D., of MD Anderson's Department of Immunology and the Center for Cancer Immunology; Chung also is with The University of Texas Health Science Center at Houston Institute of Molecular Medicine; Seema Rawal and Sattva Neelapu, M.D., of MD Anderson's Department of Lymphoma and Myeloma, also of the Center for Cancer Immunology; and Ziao-hui Zhou, M.D., Hui-min Fan, M.D., and Zhong-ming Liu, M.D., of Shanghai Dong Fang Hospital, Shanghai, China.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For eight of the past 10 years, including 2011, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>