Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special yeast reduce alcohol, improve wine

17.01.2014
A team of Australian researchers has taken a giant step towards controlling a growing problem in the wine community. They have identified special yeast that produce a lower level of alcohol, helping to preserve the flavor. Their research is published ahead of print in the journal Applied and Environmental Microbiology.

The alcoholic content of wine has crept gradually northward in the last 10-15 years, from 12-12.5 percent to beyond 15 percent. What might sound trivial to aficionados of hard liquor is seen by some oenophiles as a disturbing trend, threatening the flavor and character of some wines. That, plus issues of public health, as well as taxes (in some countries, on alcoholic content), have created a need for approaches to lowering alcohol content.

The investigation began with a systematic screening of non-Saccharomyces yeast as a means of achieving such a reduction, says corresponding author Cristian Varela of the Australian Wine Research Institute, Adelaide, South Australia. The investigators evaluated 50 different isolates from 40 species and 24 genera for their capacity to produced wine with reduced ethanol concentration. They chose the most successful of these yeasts, Metschnikowia pulcherrima AWRI1149, for experiments in which it was set to work separately on Chardonnay and Shiraz musts.

Once the slower-growing Metschnikowia yeasts had consumed 50 percent of the sugar, S. cerevisiae were added to the mix to complete the process. This "sequential inoculation" reduced the alcohol content in Shiraz from 15 percent to 13.4 percent (and somewhat less in Chardonnay). Controls not inoculated with non-Saccharomyces strains did not produce reduced alcohol content, according to the report.

"The reduction isn't all that great, but it's in the right direction, and with more work, they might get that even lower, perhaps by letting the non-Saccharomyces yeast go longer before you throw in the Saccharomyces, says Alan Bakalinsky, of Oregon State University, Corvallis, who was not involved in the research.

This reduction in alcohol will be of great benefit to the industry says Louisa Rose, of Yalumba and Hill-Smith Family Vinyards, Angaston, South Australia, who is also a director of the Australian Wine Research Institute. "It is using techniques—sequential fermentation—that can easily be used in the winery on a commercial scale."

Previous studies investigating the effects of non-Saccharomyces yeasts on alcoholic fermentation have focused on few species and been concerned principally with the formation of the flavor compounds that might impact negatively on wine quality. None of these led to reductions in alcohol content as substantial as those he reported, says Varela.

The rise in alcohol content in wine has resulted from later harvesting of red grapes. This allows the tannins—responsible for astringency and bitterness—to soften, and in some varieties, it helps minimize the presence of off-flavors, like methoxypyrazines (green pepper/asparagus sensory notes.) But on the downside, the boost in alcohol content reduces aroma and flavor intensity, as well as otherwise impairing the oenological experience. Reducing the alcohol would enable the best of both worlds.

It would also reduce consumer costs in countries where alcohol consumption is taxed, and accede to national and international public health recommendations to lower the alcohol content of alcoholic beverages, such as wine.

A copy of the manuscript can be found online at http://bit.ly/asmtip0114f. The final version of the article is scheduled for the March 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>