Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special yeast reduce alcohol, improve wine

17.01.2014
A team of Australian researchers has taken a giant step towards controlling a growing problem in the wine community. They have identified special yeast that produce a lower level of alcohol, helping to preserve the flavor. Their research is published ahead of print in the journal Applied and Environmental Microbiology.

The alcoholic content of wine has crept gradually northward in the last 10-15 years, from 12-12.5 percent to beyond 15 percent. What might sound trivial to aficionados of hard liquor is seen by some oenophiles as a disturbing trend, threatening the flavor and character of some wines. That, plus issues of public health, as well as taxes (in some countries, on alcoholic content), have created a need for approaches to lowering alcohol content.

The investigation began with a systematic screening of non-Saccharomyces yeast as a means of achieving such a reduction, says corresponding author Cristian Varela of the Australian Wine Research Institute, Adelaide, South Australia. The investigators evaluated 50 different isolates from 40 species and 24 genera for their capacity to produced wine with reduced ethanol concentration. They chose the most successful of these yeasts, Metschnikowia pulcherrima AWRI1149, for experiments in which it was set to work separately on Chardonnay and Shiraz musts.

Once the slower-growing Metschnikowia yeasts had consumed 50 percent of the sugar, S. cerevisiae were added to the mix to complete the process. This "sequential inoculation" reduced the alcohol content in Shiraz from 15 percent to 13.4 percent (and somewhat less in Chardonnay). Controls not inoculated with non-Saccharomyces strains did not produce reduced alcohol content, according to the report.

"The reduction isn't all that great, but it's in the right direction, and with more work, they might get that even lower, perhaps by letting the non-Saccharomyces yeast go longer before you throw in the Saccharomyces, says Alan Bakalinsky, of Oregon State University, Corvallis, who was not involved in the research.

This reduction in alcohol will be of great benefit to the industry says Louisa Rose, of Yalumba and Hill-Smith Family Vinyards, Angaston, South Australia, who is also a director of the Australian Wine Research Institute. "It is using techniques—sequential fermentation—that can easily be used in the winery on a commercial scale."

Previous studies investigating the effects of non-Saccharomyces yeasts on alcoholic fermentation have focused on few species and been concerned principally with the formation of the flavor compounds that might impact negatively on wine quality. None of these led to reductions in alcohol content as substantial as those he reported, says Varela.

The rise in alcohol content in wine has resulted from later harvesting of red grapes. This allows the tannins—responsible for astringency and bitterness—to soften, and in some varieties, it helps minimize the presence of off-flavors, like methoxypyrazines (green pepper/asparagus sensory notes.) But on the downside, the boost in alcohol content reduces aroma and flavor intensity, as well as otherwise impairing the oenological experience. Reducing the alcohol would enable the best of both worlds.

It would also reduce consumer costs in countries where alcohol consumption is taxed, and accede to national and international public health recommendations to lower the alcohol content of alcoholic beverages, such as wine.

A copy of the manuscript can be found online at http://bit.ly/asmtip0114f. The final version of the article is scheduled for the March 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>