Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special sugar, nanoparticles combine to detect cholera toxin

19.01.2011
A complex sugar may someday become one of the most effective weapons to stop the spread of cholera, a disease that has claimed thousands of lives in Haiti since the devastating earthquake last year.

A technique developed by University of Central Florida scientists would allow relief workers to test water sources that could be contaminated with the cholera toxin. In the test, the sugar dextran is coated onto iron oxide nanoparticles and then added to a sample of the water. If the cholera toxin is present, the toxin will bind to the nanoparticles' dextran. This is because dextran looks similar to the cholera toxin receptor (GM1) found on cells' surface in the victim's gut.

The technique likely would be less expensive than those currently available, and it would provide results more quickly, enabling workers to restrict access to contaminated sources and limit the spread of the disease.

"It's really quite amazing," said UCF assistant professor J. Manuel Perez, the lead researcher on the project. "It means we have a quicker diagnostic tool using a simple and relatively cheap sugar-nanoparticle combination."

Early studies also show that the technique could someday be used to treat someone infected with cholera, which is caused by poor sanitation and dirty water, and potentially other diseases, Perez said.

More studies are needed to prove the adaptability of the technique, but its impact could be huge. In countries with poor sanitation, outbreaks caused by drinking contaminated water often prove fatal. Deadly toxins also can result from bioterrorism or food contamination.

There are an estimated 3 million to 5 million cholera cases, and 100,000 to 120,000 deaths, worldwide each year, according to the World Health Organization. A cholera outbreak has killed more than 3,000 people in Haiti since the earthquake, and WHO warned earlier in January that the outbreak has not yet reached its peak.

Research findings appear online today in the journal Bioconjugate Chemistry. (http://pubs.acs.org/doi/abs/10.1021/bc100442q). The National Institute of General Medical Sciences at the National Institutes of Health funded the research.

The findings may give the Federal Drug Administration, Centers for Disease Control and Prevention and several other agencies additional screening tools to combat toxins. The UCF-developed technique is faster than current detection methods, and it would likely be less expensive because these nanoparticles are cheap to make in large quantities. The detection instruments are compact in some cases the size of a desktop computer and a handheld calculator, and they could be turned into mobile devices that relief workers or food screeners could use in the field.

"As we have seen in the 2010 outbreak in Haiti, cholera remains a serious threat," said Janna Wehrle, Ph.D., of the National Institutes of Health, who oversees Dr. Perez's and other grants that focus on protein structures and interactions. "By developing a fast and sensitive test for cholera toxin that does not require sophisticated equipment or refrigeration, Drs. Perez and Teter have provided health care workers with a potentially valuable tool for use in areas struck by natural disasters or with inadequate infrastructure. The possibility that the novel chemistry discovered by these investigators might also be useful for treating cholera is especially exciting."

Studies that are under way may confirm early indications that dextran can be an effective drug for patients infected with cholera, added UCF Associate Professor Kenneth Teter, a co-author on the study. This could be especially beneficial in developing countries such as Haiti, as dextran is a relatively inexpensive compound to produce.

Additionally, both dextran and iron oxide are commonly used in other medical applications. Dextran is often used to prevent blood clots anticoagulant and in emergency treatments of hemorrhagic and traumatic shock. Iron oxide nanoparticles are used to treat anemia and as MRI contrast agents to achieve improved anatomical imaging.

Other contributors on the research team include postdoctoral fellows Charalambos Kaittanis and Santimukul Santra of UCF's NanoScience Technology Center, graduate student Oscar Santiesteban of the Chemistry Department and postdoctoral fellow Tuhina Banerjee from the Burnett School of Biomedical Sciences.

Perez, a Puerto Rico native, has broad experience in the academic, research and corporate worlds. A UCF professor since 2005, he works at the NanoScience Technology Center and in the Chemistry Department and Burnett School of Biomedical Sciences in the College of Medicine. He has a Ph.D. from Boston University in Biochemistry, and he completed postdoctoral training at Massachusetts General Hospital, Harvard Medical School's teaching and research hospital. He also has worked for the Millipore Corporation in Bedford, Mass.

At UCF, Perez has written numerous articles in prestigious journals such as Nature Materials, Nanoletters, Small, PLoS One, ACS Nano and Angewandte Chemie Int. Ed and JACS.

UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the second largest in the nation with more than 56,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy. For more information visit http://news.ucf.edu

NIGMS is a part of NIH that supports basic research to increase our understanding of life processes and lay the foundation for advances in disease diagnosis, treatment and prevention. For more information on the Institute's research and training programs, see http://www.nigms.nih.gov.

The National Institutes of Health (NIH)-The Nation's Medical Research Agency-includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary Federal agency for conducting and supporting basic, clinical, and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu
http://www.nih.gov

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>