Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spanish slug – busting an invasion myth


Spanish slugs (Arion lusitanicus) are one of the most common slug species in Central Europe.

The animals sometimes nicknamed “killer slugs” are known to do their fair share of damage in fields and gardens. The slug was thought to have originated in Southern Europe. However researchers of the German Biodiversity and Climate Centre and the Goethe University now found out, that the prime example of an invasive species is originally from Central Europe and thus no “immigrant” after all.

Spanish slug (Arion lusitanicus)

Copyright: Markus Pfenninger

Control measures, such as the EU regulation on prevention, early warning, rapid response, and management of invasive species which is being discussed currently, would therefore not apply to this species.

For some time conservationists have made aware of the fact that the rapidly growing number of brown Spanish slugs is replacing the native black slug in Central Europe as well as inflicting significant damage on natural vegetation and agricultural products.

The numbers speak for themselves: today Arion lusitanicus is the most common species of snail in Germany. It is also ranked among the "100 of the worst" invasive animal and plant species in Central Europe that are thought to have a significant negative impact on biodiversity, economy and health. Allegedly the Spanish Slug made its way to Central Europe with imports of fruit and vegetables in the 1950s.

No Spanish slugs to be found in Spain

When taking stock German researchers however could not find a single individ-ual of the slug in its presumed home country. In the spring of 2010 researchers of the Biodiversity and Climate Research Centre and the Goethe University collected 300 specimens of the snail in 60 locations in France, Spain, the UK and the Benelux countries and identified the species they came from. "Instead of the Spanish slug we found numerous, so-called cryptic species, which are indistinguishable using traditional methods of taxonomy which is based on morphology. Therefore, the animals were identified using DNA sequence data" lead author Prof. Markus Pfenninger, who conducts research on BiK-F and the Goethe University and teaches, explains.

Many cryptic species

Many of the specimens examined did not fit to a previously described, genetically characterized species. "We found a lot of unnamed, sometimes highly divergent haplotypes. This indicates the presence of several undescribed Arion species which we only discover using DNA taxonomy. It follows that Arion is very unresolved genus from a taxonomic point of view." But looking into the genes of the slugs yielded even more insights. Shared mutations in the genetic information of different individuals indicate relationships between them. "On the basis of this we created a phylogenetic tree and related it to the geographic distribution. It showed why we could not find Arion lusitanicus in its alleged homeland. The species is definitely not native to Spain but originated in Central Europe" concludes Pfenninger.

EU-regulations on alien species would not necessarily apply

According to experts there are more than 12,000 non-native species in Europe, and the number is increasing. Alien species are one of the main threats to biodiversity and native species as well as causing immense economic damage, e.g. via yield losses in agriculture. In April 2014 the EU parliament therefore approved a proposal for EU-wide measures to ban further import of non-native species and combatting non-native species which are already at home in EU more effectively. “Whether a species is classified as native or not will influence its management policy. Our research goes to show that we should be more prudent in labeling a species ‘invasive’ or non-native when the evidence for anthropogenic introduction is poor”, says Pfenninger and adds: “Perhaps the rapid increase in Spanish slugs we have seen in the last decades is caused by changes of land use practice. It may seem like an invasion when in truth there isn’t one going on “.

Pfenninger, M., Weigand, A., Bálint, M., Klussmann-Kolb, A.: Busting an invasion myth: the Lusitanian slug (Arion lusitanicus auct. non Mabille or Arion vulgaris Moquin-Tandon 1855) is native in Central Europe . - Evolutionary Applications, DOI: 10.1111/eva.12177

For further information please contact

Prof. Dr. Markus Pfenninger
Goethe-University &
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1841

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F),
Press officer
Tel. +49 (0)69 7542 1838

LOEWE Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action. For further details, please visit www.bik‐

Sabine Wendler | Senckenberg

Further reports about: BiK-F Biodiversity Climate DNA LOEWE Senckenberg Spanish slug damage methods species taxonomy

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>