Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish Researchers will Employ Microscopic Clay Minerals to Design More Efficient and Less Toxic Drugs

05.07.2012
University of Granada and the Spanish Consejo Superior de Investigaciones Científicas (CSIC) researchers will use nanoscopic clay for the controlled release of drugs in patients, with the aim of designing more efficient and less toxic drugs. This is a pilot research study that includes CSIC and University of Granada researchers and researchers from other institutions.
This project is based on a research on the adsortion and desorption of bioactive molecules on clay mineral surface. The goal is to design and develop new nanofunctional materials of natural origin that enable the controlled release of bioactive molecules, which is more environmentally-friendly that other synthetic systems.

This interdisciplinary research study has been funded by the University of Granada Campus of International Excellence BioTic. A total of six Andalusian research groups from different scientific fields –computational modeling of clay minerals, galenic development, natural resources, environmental evaluation and in vivo studies of bioactive substances– have participated in this study. In addition, an Andalusian company specialised in microencapsulated materials has also contributed to the study.

This project was coordinated by the University of Granada professor César Viseras Iborra and the CSIC researcher Ignacio Sainz Díaz. The study embraces, among other, atomistic computational studies, the preparation and characterization of materials at microscopic level, and their application to in vivo tests.

A number of institutions and companies have contributed to this study, as the Escuela Andaluza de Salud Pública, the Andalusian company LAIMAT and the Commissariat à l´Énergie Atomique in Grenoble, which are all aggregated to the CEI-BioTic.

Viseras Iborra and Sainz Díaz state that "the collaboration of scientific and technical experts will promote new collaborations in the future and will enable the development of new applications of clay minerals as the base of new nanofunctional materials".

http://canal.ugr.es/health-science-and-technology/item/58579

Carlos Centeno Cuadros | alfa
Further information:
http://www.ugr.es

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>