Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish Researchers will Employ Microscopic Clay Minerals to Design More Efficient and Less Toxic Drugs

05.07.2012
University of Granada and the Spanish Consejo Superior de Investigaciones Científicas (CSIC) researchers will use nanoscopic clay for the controlled release of drugs in patients, with the aim of designing more efficient and less toxic drugs. This is a pilot research study that includes CSIC and University of Granada researchers and researchers from other institutions.
This project is based on a research on the adsortion and desorption of bioactive molecules on clay mineral surface. The goal is to design and develop new nanofunctional materials of natural origin that enable the controlled release of bioactive molecules, which is more environmentally-friendly that other synthetic systems.

This interdisciplinary research study has been funded by the University of Granada Campus of International Excellence BioTic. A total of six Andalusian research groups from different scientific fields –computational modeling of clay minerals, galenic development, natural resources, environmental evaluation and in vivo studies of bioactive substances– have participated in this study. In addition, an Andalusian company specialised in microencapsulated materials has also contributed to the study.

This project was coordinated by the University of Granada professor César Viseras Iborra and the CSIC researcher Ignacio Sainz Díaz. The study embraces, among other, atomistic computational studies, the preparation and characterization of materials at microscopic level, and their application to in vivo tests.

A number of institutions and companies have contributed to this study, as the Escuela Andaluza de Salud Pública, the Andalusian company LAIMAT and the Commissariat à l´Énergie Atomique in Grenoble, which are all aggregated to the CEI-BioTic.

Viseras Iborra and Sainz Díaz state that "the collaboration of scientific and technical experts will promote new collaborations in the future and will enable the development of new applications of clay minerals as the base of new nanofunctional materials".

http://canal.ugr.es/health-science-and-technology/item/58579

Carlos Centeno Cuadros | alfa
Further information:
http://www.ugr.es

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>