Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spaceflight may extend the lifespan of microscopic worm

09.07.2012
The effect of spaceflight on a microscopic worm — Caenorhabditis elegans (C. elegans) — could help it to live longer.

The discovery was made by an international group of scientists studying the loss of bone and muscle mass experienced by astronauts after extended flights in space. The results of this research have been published today, July 5 2012, in the online journal Scientific Reports.

Dr Nathaniel Szewczyk, from The University of Nottingham, was part of the ICE-FIRST project which involved scientists from Japan, France, the US, and Canada. They discovered that spaceflight suppressed accumulation of toxic proteins that normally accumulate within aging muscle. They also discovered a group of genes that are expressed at lower levels during spaceflight. When the expression of these same genes were lowered in worms back on Earth the worms lived longer.

Dr Szewczyk, an expert in muscle metabolism, said: “We identified seven genes, which were down-regulated in space and whose inactivation extended lifespan under laboratory conditions.”

How do these genes play a role in longevity control?

“We are not entirely certain, but it would appear that these genes are involved in how the worm senses the environment and signals changes in metabolism in order to adapt to the environment. For example, one of the genes we have identified encodes insulin which, because of diabetes, is well known to be associated with metabolic control. In worms, flies, and mice insulin is also associated with modulation of lifespan.”

What could this mean for space travellers?

“Well, most of us know that muscle tends to shrink in space. These latest results suggest that this is almost certainly an adaptive response rather than a pathological one. Counter-intuitively, muscle in space may age better than on Earth. It may also be that spaceflight slows the process of aging.”

Dr Szewczyk’s role was to provide expertise in the culturing of worms in CeMM — a special liquid food for worms. Dr Szewczyk transported the samples to and from the Russian launch site and ran a series of ‘health’ checks to ensure that the tiny astronauts were fit for flying. On their return he helped with the analysis of the data.

Nottingham’s space biology lab

Dr Szewczyk studies the signals that control muscle protein degradation in the human body. C. elegans is the perfect substitute for studying long-term changes in human physiology because they suffer from muscle atrophy — muscle loss — under many of the same conditions that people do.

C. elegans was the first multi-cellular organism to have its genetic structure completely mapped and many of its 20,000 genes perform the same functions as those in humans. Two thousand of these genes have a role in promoting muscle function and 50 to 60 per cent of these have very obvious human counterparts.

When the research began Dr Szewczyk was working at NASA. He is now based at The University of Nottingham’s MRC and Arthritis Research UK Centre for Musculoskeletal Ageing Research. He is one of the leading scientists studying ‘worms in space’ and his lab is currently the most productive ‘space biology’ lab in the UK.

The experiment in 2004 involved a consignment of live worms being despatched to the International Space Station (ISS) onboard the Dutch DELTA mission.

He uses worms which originate from a rubbish dump in Bristol. C. elegans often feed on decaying fruit and vegetable matter.

They have since taken part in five spaceflights to the ISS with the aim of learning more about the effect of microgravity on the physiology of the human body.

Notably, in 2003 Dr Szewczyk’s C. elegans made the news when they survived the Space Shuttle Columbia disaster. Living in petri dishes and enclosed in aluminium canisters the worms survived re-entry and impact on the ground and were recovered weeks after the disaster.

This spaceflight work teaches us things about the body that we couldn’t learn on Earth. They have led to the publication of research into how to block muscle degradation using a form of gene therapy in PLoS ONE and publication of a muscle repair mechanism in PLoS Genetics. The work on C. elegans has also established that worms can live and reproduce for at least six months in space. This makes it an ideal and cost-effective experimental system to investigate the effects of long duration and distance space exploration as recently reported in Interface, a journal of The Royal Society. Together these missions have established that the team is not only better able to understand how muscle works on Earth but they are also in a position to send worms to other planets and experiment on them along the way.

Astronaut now being studied

Another member of the Centre’s team is currently examining the effects of spaceflight upon the muscles of the current European record holder for time spent in space.

Andre Kuipers, the Dutch astronaut who flew the mission in 2004, has just returned from ISS with yet another worm experiment from space for the team at Nottingham and is also, himself, being studied.

That experiment, led by Professor Marco Narici, is to study the effects of long-duration spaceflight on human muscle.

Story credits
More information is available from Dr Nathaniel Szewczyk, at The University of Nottingham, on +44 (0)1332 724 615, nathaniel.szewczyk@nottingham.ac.uk
Lindsay Brooke - Media Relations Manager
Email: lindsay.brooke@nottingham.ac.uk Phone: +44 (0)115 951 5751 Location: King's Meadow Campus

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk
http://www.nottingham.ac.uk/news/pressreleases/2012/july/spaceflight-may-extend-the-lifespan.aspx

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>