Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spacebound Bacteria Inspire Earthbound Remedies

22.03.2011
Recent research aboard the Space Shuttle is giving scientists a better understanding of how infectious disease occurs in space and could someday improve astronaut health and provide novel treatments for people on Earth.

The research involves an opportunistic pathogen known as Pseudomonas aeruginosa, the same bacterium that caused astronaut Fred Haise to become sick during the Apollo 13 mission to the moon in 1970.

Scientists studying the bacterium aboard the Shuttle hope to unlock the mysteries of how disease-causing agents work. They believe the research can lead to advanced vaccines and therapies to better fight infections. The findings are based on flight experiments with microbial pathogens on NASA space shuttle missions to the station and appear in a recent edition of the journal Applied and Environmental Microbiology.

"For the first time, we're able to see that two very different species of bacteria - Salmonella and Pseudomonas - share the same basic regulating mechanism, or master control switch, that micro-manages many of the microbes' responses to the spaceflight environment," said Cheryl Nickerson, associate professor at the Center for Infectious Diseases and Vaccinology, the Biodesign Institute at Arizona State University (ASU) in Tempe. "We have shown that spaceflight affects common regulators in both bacteria that invariably cause disease in healthy individuals [Salmonella] and those that cause disease only in people with compromised immune systems [Pseudomonas]."

By studying the global gene expression patterns in bacterial pathogens like Pseudomonas and Salmonella, Nickerson’s team learned more about how they react to reduced gravity.

Pseudomonas aeruginosa can coexist as a benign microbe in healthy individuals, but poses a serious threat to people with compromised immune systems. It is the leading cause of death for those suffering from cystic fibrosis and is a serious risk to burn victims. However, a high enough dosage of Salmonella typhimurium always will cause disease, even in healthy individuals.

During the initial study in 2006, two bacterial pathogens, Salmonella typhimurium and Pseudomonas aeruginosa, and one fungal pathogen, Candida albicans, were launched to the station aboard space shuttles. They were allowed to grow in appropriately contained vessels for several days. Nickerson’s team was the first to evaluate global gene and protein expression (how the bacteria react at the molecular level) and virulence changes in microbes in response to reduced gravity.

"We discovered that aspects of the environment that microbes encountered during spaceflight appeared to mimic key conditions that pathogens normally encounter in our bodies during the natural course of infection, particularly in the respiratory system, gastrointestinal system and urogenital tract," Nickerson said. NASA's Advanced Capabilities Division Director, Benjamin Neumann added that, "This means that in addition to safeguarding future space travelers, such research may aid the quest for better therapeutics against pathogens here on Earth."

The initial study and follow-on space experiments show that spaceflight creates a low fluid shear environment, where liquids exert little force as they flow over the surface of cells. The low fluid shear environment of spaceflight affects the molecular genetic regulators that can make microbes more infectious. These same regulators might function in a similar way to regulate microbial virulence during the course of infection in the human body.

"We have now shown that spaceflight conditions modified molecular pathways that are known to be involved in the virulence of Pseudomonas aeruginosa," said Aurélie Crabbé, a researcher in Dr. Nickerson’s lab at ASU and the lead author of the paper. "Future work will establish whether Pseudomonas also exhibits increased virulence following spaceflight as did Salmonella."

NASA's Fundamental Space Biology Program sponsored and funded the research conducted by Crabbé and Nickerson along with their colleagues at the Biodesign Institute at ASU. They collaborated with the University of Colorado School of Medicine, University of Arizona, Belgian Nuclear Research Center, Villanova University, Tulane University, Affymetrix Inc, and NASA scientists.
For an abstract of the journal article on this research, visit:
http://www.ncbi.nlm.nih.gov/pubmed/21169425
For more information about space station research, visit:
http://www.nasa.gov/iss-science

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu
http://www.biodesign.asu.edu/news/spacebound-bacteria-inspire-earthbound-remedies

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>