Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too Much SP2 Protein Turns Stem Cells Into “Evil Twin” Tumor-forming Cancer Cells

28.10.2010
Researchers at North Carolina State University have found that the overproduction of a key protein in stem cells causes those stem cells to form cancerous tumors. Their work may lead to new treatments for a variety of cancers.

Dr. Jon Horowitz, associate professor of molecular biomedical sciences, and a team of NC State researchers looked at the protein SP2, which regulates the activity of other genes.

They knew that elevated amounts of SP2 had been observed in human prostate-cancer patients, and that these levels only increased as the tumors became more dangerous. They then showed that precisely the same thing occurs in mouse skin tumors.

Horowitz and the team decided to look at SP2 as a possible cause of tumor formation in epithelial cell-derived tumors, which comprise about 80 percent of all human tumors; epithelial cells cover the body’s internal and external surfaces. They found that overproduction of the SP2 protein in epithelial stem cells stopped them from spawning mature descendants. The affected stem cells, unable to produce mature cells, just kept proliferating, resulting in the formation of tumors.

The researchers’ results are published in the Nov. 3 edition of the journal Cancer Research.

“Something happens to normal stem cells that changes the way SP2 is regulated, and it starts being overproduced,” Horowitz says. “SP2 basically hijacks the stem cell, and turns it into its evil twin – a cancer cell.”

Now that the link between tumor formation and SP2 has been shown, Horowitz says, scientists can turn their attention to looking at ways to target the overproduction of this protein. “Our hope is that we can find an ‘antidote’ to SP2, to restore normal cell proliferation to those cancer stem cells and reverse the process.”

The research was funded by a grant from the National Institutes of Health (NIH). The Department of Molecular Biomedical Sciences is part of NC State’s College of Veterinary Medicine.

Note to editors: Abstract of the paper follows.

“Overexpression of Transcription Factor Sp2 Inhibits Epidermal Differentiation and Increases Susceptibility to Wound and Carcinogen-Induced Tumorigenesis”
Authors: Tae-Hyung Kim, Shannon L. Chiera, Keith E. Linder, Robert C. Smart, and Jonathan M. Horowitz, NC State University; Carol S. Trempus, Metabolism and Molecular Mechanisms Group, Laboratory of Toxicology and Pharmacology, NIH, NIEHS

Published: Nov. 3 in Cancer Research

Abstract: Sp proteins are evolutionarily-conserved transcription factors required for the expression of a wide variety of genes that are critical for development and cell-cycle progression. De-regulated expression of certain Sp proteins is associated with the formation of a variety of human tumors, however direct evidence that any given Sp protein is oncogenic has been lacking. Here we report that Sp2 protein abundance in mice increases in concert with the progression of carcinogen-induced murine squamous cell carcinomas. Transgenic mice specifically overexpressing murine Sp2 in epidermal basal keratinocytes were highly susceptible to wound- and carcinogen-induced papillomagenesis. Transgenic animals that were homozygous rather than hemizygous for the Sp2 transgene exhibited a striking arrest in the epidermal differentiation program, perishing within two weeks of birth. Our results directly support the likelihood that Sp2 overexpression occurring in various human cancers has significant functional impact.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/horowitzcrj/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>