Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soybeans a source of valuable chemical

20.12.2012
Rice University scientists turn low-value soy mash into high-value succinic acid
The humble soybean could become an inexpensive new source of a widely used chemical for plastics, textiles, drugs, solvents and as a food additive.

Succinic acid, traditionally drawn from petroleum, is one focus of research by Rice chemists George Bennett and Ka-Yiu San. In 2004, the Department of Energy named succinic acid one of 12 “platform” chemicals that could be produced from sugars by biological means and turned into high-value materials.

Several years ago, Rice patented a process by Bennett and San for the bio-based production of succinic acid that employed genetically modified E. coli bacteria to convert glucose into succinic acid in a way that would be competitive with petroleum-based production.

The new succinate process developed by Bennett, San and Chandresh Thakker and reported recently in Bioresource Technology promises to make even better use of a cheap and plentiful feedstock, primarily the indigestible parts of the soybean.

“We are trying to find a cheaper, renewable raw material to start with so the end product will be more profitable,” said Thakker, a research scientist in the Bennett lab at Rice’s BioScience Research Collaborative and lead author of the study. “The challenge has been to make this biomass process cost-competitive with the petrochemical methods people have been using for many years.”

Bennett feels they have done that with soybean-derived feedstock as an inexpensive source of the carbon that microorganisms digest to produce the desired chemical via fermentation. “A lot of people use plant oils for cooking – corn or soybean or canola — instead of lard, as they did in the old days,” he said. “The oils are among the main products of these seeds. Another product is protein, which is used as a high-quality food.

“What’s left over is indigestible fiber and small carbohydrates,” said Bennett, Rice’s E. Dell Butcher Professor of Biochemistry and Cell Biology. “It’s used in small amounts in certain animal feeds, but overall it’s a very low-value material.”

The Rice researchers are changing that with the help of E. coli bacteria engineered to process soy meal that generally gets discarded. Certain microbes naturally produce succinic acid from such feedstock, but manipulating E. coli’s metabolic pathways (by eliminating pathways that produce other chemicals like ethanol, for instance) can make it far more efficient.

Expanding on their success in producing succinic acid from glucose, the new microbes are engineered to metabolize a variety of sugars found in soybean meal. The theoretical ideal is a 1:1 ratio of feedstock (the extracted sugars) to product, which they feel is achievable by industry. In the lab, under less controlled conditions, they still found the process highly efficient. “We’re demonstrating a very high yield,” Thakker said. “We’re achieving in a flask a non-optimized formation of succinate that is close to the theoretical goal.”

Bennett said his lab has been looking at soybeans for nearly three years. “We’re always interested in low-cost feedstock,” he said. “We were able to get a connection with a soybean group that is very interested in technologies to make better and more profitable use of their crop.

“There’s a fair amount of oilseed residuals available, including cottonseed carbohydrates, that are not used for any high-value product, and we’re in the space of microbial engineering to enable these sorts of materials to be used in a good way,” he said.

Ka-Yiu San is the E.D. Butcher Professor of Bioengineering and a professor of chemical and biomolecular engineering at Rice.

The United Soybean Board and the National Science Foundation supported the research.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: E. coli metabolic pathway soybean succinic acid

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>