Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Dakota Research Project Could Help Colonize Space

22.07.2011
Humans may move one step closer to colonizing space thanks to a new research project that NASA is funding at South Dakota State University, the South Dakota School of Mines and Technology and Oglala Lakota College.

The South Dakota institutions have won a National Aeronautics and Space Administration grant of $750,000 to study ways to use cyanobacteria to make energy-dense fuels and high-value chemicals, oxygen, and cleansed water directly from carbon dioxide, sunlight, and wastewater.

Cyanobacteria are commonly known as blue-green algae.

NASA awarded the grant to a project submitted through the South Dakota School of Mines and Technology, but the largest share of the work will take place at South Dakota State University. Key SDSU researchers in the work include associate professor Ruanbao Zhou and professor Bill Gibbons in the Department of Biology and Microbiology; professors Kasiviswanathan Muthukumarappan and Gary Anderson and assistant professor Zhengrong Gu in the Department of Agricultural and Biosystems Engineering; and assistant professor XingZhong Yan in the Department of Electrical Engineering and Computer Science. Researchers elsewhere include professors Robb Winter and David Salem at the South Dakota School of Mines and Technology and professor Deig Sandoval at Oglala Lakota College.

“This project will help NASA’s Aeronautics Research Mission Directorate address the goal of providing renewable, energy-dense biofuels in a sustainable manner, while supplying technology to sequester carbon dioxide released by an astronautics crew,” Zhou said. “Cyanobacteria, through billions of years of evolution, have become well-tuned biological devices that can efficiently harvest solar energy, the one limitless source of energy on Earth, and convert that energy into a variety of reduced carbon compounds. Because of their simple requirements for rapid growth and ease of genetic manipulation as well as industrialized production, cyanobacteria are particularly attractive organisms for biofuel production.”

Because sunlight is available in space, life support systems that rely in part on photosynthesis to grow algae are one possibility for moving humans beyond Earth’s atmosphere.

The grant was awarded through NASA's Experimental Program to Stimulate Competitive Research, or EPSCoR. The program helps develop partnerships between NASA research missions and programs, academic institutions and industry. It also helps states establish long-term academic research enterprises that will be self-sustaining and competitive and will contribute to the states' economic viability and development.

The researchers and NASA believe the project could provide "game changing" technology to NASA’s Office of the Chief Technologist. It could help resolve critical issues in what NASA calls its "Space Power and Energy Storage" and the "Human Health, Life Support and Habitation Systems" roadmaps — essentially summaries of what is needed to achieve national and agency goals in human space exploration over the next few decades.

The proposal addresses two of NASA's grand challenges — space colonization and affordable abundant power. The Exploration Systems Mission and Space Operations Mission Directorates will benefit by development of an integrated system that can support colonization missions by producing chemical building blocks and fuels from sunlight, wastes, and carbon dioxide; and by producing oxygen and clean water to maintain life support.

The project also proposes to develop an integrated photobioreactor and product recovery system, driven by solar power provided by light fibers; to strengthen collaborations with the NASA Ames Research Center to also improve performance of the Offshore Membrane Enclosures for Growing Algae system; to enhance multi-disciplinary undergraduate and graduate education on molecular engineering, bioprocessing systems, and applied photonics, including Native American students; and to collaborate with industrial partners to promote economic development in South Dakota.

“Our initial target product is a long chain alcohol with a much higher energy density than ethanol,” Zhou said. “This cyanofactory platform could be easily reengineered to produce other fuels and chemicals using free solar energy and carbon dioxide.”

The initial work that led to the grant award came from the proof of concept program developed by SDSU's Technology Transfer Office with funding made available through the Small Business Administration. Additional support has been provided by the South Dakota Agricultural Experiment Station, the Center for Bioprocessing Research and Development, and the North Central Sun Grant Center.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>