Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Dakota Research Project Could Help Colonize Space

22.07.2011
Humans may move one step closer to colonizing space thanks to a new research project that NASA is funding at South Dakota State University, the South Dakota School of Mines and Technology and Oglala Lakota College.

The South Dakota institutions have won a National Aeronautics and Space Administration grant of $750,000 to study ways to use cyanobacteria to make energy-dense fuels and high-value chemicals, oxygen, and cleansed water directly from carbon dioxide, sunlight, and wastewater.

Cyanobacteria are commonly known as blue-green algae.

NASA awarded the grant to a project submitted through the South Dakota School of Mines and Technology, but the largest share of the work will take place at South Dakota State University. Key SDSU researchers in the work include associate professor Ruanbao Zhou and professor Bill Gibbons in the Department of Biology and Microbiology; professors Kasiviswanathan Muthukumarappan and Gary Anderson and assistant professor Zhengrong Gu in the Department of Agricultural and Biosystems Engineering; and assistant professor XingZhong Yan in the Department of Electrical Engineering and Computer Science. Researchers elsewhere include professors Robb Winter and David Salem at the South Dakota School of Mines and Technology and professor Deig Sandoval at Oglala Lakota College.

“This project will help NASA’s Aeronautics Research Mission Directorate address the goal of providing renewable, energy-dense biofuels in a sustainable manner, while supplying technology to sequester carbon dioxide released by an astronautics crew,” Zhou said. “Cyanobacteria, through billions of years of evolution, have become well-tuned biological devices that can efficiently harvest solar energy, the one limitless source of energy on Earth, and convert that energy into a variety of reduced carbon compounds. Because of their simple requirements for rapid growth and ease of genetic manipulation as well as industrialized production, cyanobacteria are particularly attractive organisms for biofuel production.”

Because sunlight is available in space, life support systems that rely in part on photosynthesis to grow algae are one possibility for moving humans beyond Earth’s atmosphere.

The grant was awarded through NASA's Experimental Program to Stimulate Competitive Research, or EPSCoR. The program helps develop partnerships between NASA research missions and programs, academic institutions and industry. It also helps states establish long-term academic research enterprises that will be self-sustaining and competitive and will contribute to the states' economic viability and development.

The researchers and NASA believe the project could provide "game changing" technology to NASA’s Office of the Chief Technologist. It could help resolve critical issues in what NASA calls its "Space Power and Energy Storage" and the "Human Health, Life Support and Habitation Systems" roadmaps — essentially summaries of what is needed to achieve national and agency goals in human space exploration over the next few decades.

The proposal addresses two of NASA's grand challenges — space colonization and affordable abundant power. The Exploration Systems Mission and Space Operations Mission Directorates will benefit by development of an integrated system that can support colonization missions by producing chemical building blocks and fuels from sunlight, wastes, and carbon dioxide; and by producing oxygen and clean water to maintain life support.

The project also proposes to develop an integrated photobioreactor and product recovery system, driven by solar power provided by light fibers; to strengthen collaborations with the NASA Ames Research Center to also improve performance of the Offshore Membrane Enclosures for Growing Algae system; to enhance multi-disciplinary undergraduate and graduate education on molecular engineering, bioprocessing systems, and applied photonics, including Native American students; and to collaborate with industrial partners to promote economic development in South Dakota.

“Our initial target product is a long chain alcohol with a much higher energy density than ethanol,” Zhou said. “This cyanofactory platform could be easily reengineered to produce other fuels and chemicals using free solar energy and carbon dioxide.”

The initial work that led to the grant award came from the proof of concept program developed by SDSU's Technology Transfer Office with funding made available through the Small Business Administration. Additional support has been provided by the South Dakota Agricultural Experiment Station, the Center for Bioprocessing Research and Development, and the North Central Sun Grant Center.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>