Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Dakota Research Project Could Help Colonize Space

22.07.2011
Humans may move one step closer to colonizing space thanks to a new research project that NASA is funding at South Dakota State University, the South Dakota School of Mines and Technology and Oglala Lakota College.

The South Dakota institutions have won a National Aeronautics and Space Administration grant of $750,000 to study ways to use cyanobacteria to make energy-dense fuels and high-value chemicals, oxygen, and cleansed water directly from carbon dioxide, sunlight, and wastewater.

Cyanobacteria are commonly known as blue-green algae.

NASA awarded the grant to a project submitted through the South Dakota School of Mines and Technology, but the largest share of the work will take place at South Dakota State University. Key SDSU researchers in the work include associate professor Ruanbao Zhou and professor Bill Gibbons in the Department of Biology and Microbiology; professors Kasiviswanathan Muthukumarappan and Gary Anderson and assistant professor Zhengrong Gu in the Department of Agricultural and Biosystems Engineering; and assistant professor XingZhong Yan in the Department of Electrical Engineering and Computer Science. Researchers elsewhere include professors Robb Winter and David Salem at the South Dakota School of Mines and Technology and professor Deig Sandoval at Oglala Lakota College.

“This project will help NASA’s Aeronautics Research Mission Directorate address the goal of providing renewable, energy-dense biofuels in a sustainable manner, while supplying technology to sequester carbon dioxide released by an astronautics crew,” Zhou said. “Cyanobacteria, through billions of years of evolution, have become well-tuned biological devices that can efficiently harvest solar energy, the one limitless source of energy on Earth, and convert that energy into a variety of reduced carbon compounds. Because of their simple requirements for rapid growth and ease of genetic manipulation as well as industrialized production, cyanobacteria are particularly attractive organisms for biofuel production.”

Because sunlight is available in space, life support systems that rely in part on photosynthesis to grow algae are one possibility for moving humans beyond Earth’s atmosphere.

The grant was awarded through NASA's Experimental Program to Stimulate Competitive Research, or EPSCoR. The program helps develop partnerships between NASA research missions and programs, academic institutions and industry. It also helps states establish long-term academic research enterprises that will be self-sustaining and competitive and will contribute to the states' economic viability and development.

The researchers and NASA believe the project could provide "game changing" technology to NASA’s Office of the Chief Technologist. It could help resolve critical issues in what NASA calls its "Space Power and Energy Storage" and the "Human Health, Life Support and Habitation Systems" roadmaps — essentially summaries of what is needed to achieve national and agency goals in human space exploration over the next few decades.

The proposal addresses two of NASA's grand challenges — space colonization and affordable abundant power. The Exploration Systems Mission and Space Operations Mission Directorates will benefit by development of an integrated system that can support colonization missions by producing chemical building blocks and fuels from sunlight, wastes, and carbon dioxide; and by producing oxygen and clean water to maintain life support.

The project also proposes to develop an integrated photobioreactor and product recovery system, driven by solar power provided by light fibers; to strengthen collaborations with the NASA Ames Research Center to also improve performance of the Offshore Membrane Enclosures for Growing Algae system; to enhance multi-disciplinary undergraduate and graduate education on molecular engineering, bioprocessing systems, and applied photonics, including Native American students; and to collaborate with industrial partners to promote economic development in South Dakota.

“Our initial target product is a long chain alcohol with a much higher energy density than ethanol,” Zhou said. “This cyanofactory platform could be easily reengineered to produce other fuels and chemicals using free solar energy and carbon dioxide.”

The initial work that led to the grant award came from the proof of concept program developed by SDSU's Technology Transfer Office with funding made available through the Small Business Administration. Additional support has been provided by the South Dakota Agricultural Experiment Station, the Center for Bioprocessing Research and Development, and the North Central Sun Grant Center.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>