Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Source found for immune system effects on learning, memory

27.10.2011
Immune system cells of the brain, which scavenge pathogens and damaged neurons, are also key players in memory and learning, according to new research by Duke neuroscientists.

Earlier studies by Staci Bilbo, an assistant professor in psychology & neuroscience, had shown that laboratory rats experiencing an infection at an early age have an aggressive immune response to subsequent infections, which also harms their learning and memory.

In a study published in the Oct. 26 Journal of Neuroscience, Bilbo's team identifies the source of the learning difficulties and traces it back to the immune system itself.

The researchers found that specialized immune system cells in the brain called microglia release a signaling molecule called Interleukin-1, or IL-1, in response to an infection. IL-1 is also crucial to normal learning and memory in the hippocampus region of the brain. But too much IL-1 can impair learning and memory in laboratory animals.

"These same molecules go up in response to any brain infection. I don't really understand why you would build a brain that way, except that there are clearly benefits in other aspects of immunity, outside the brain," Bilbo said.

In a series of experiments she has been conducting for nearly a decade, very young rats are exposed to infection and then challenged again later with a second infection consisting of only harmless, dead bacteria. The "second hit" has been shown to affect learning and memory while these rats mount a highly effective immune response.

"The microglia remember that infection and respond differently," she said. "The infection itself wasn't doing permanent damage. It was changing the immune system somehow."

The second infection doesn't even have to be directly involved with the brain. A bacterial lesion on a limb produces enough of a signal to make the glia in the brain pump out extra IL-1. "These rats handle peripheral infection really well, but at a cost to the brain," Bilbo said.

To find out what had changed in the brains of the infected rats, the team used techniques borrowed from immunology to sort out one specific cell type from brain tissue rapidly enough that they could see what the cells had been doing.

The work adds to an emerging picture of glial cells acting in the brain much the same way immune system macrophages operate elsewhere in the body – gobbling up other cells and tearing them apart. The glia also perform a pruning function to streamline the brain's neural architecture as it matures. But some brain disorders appear to be a case of dysfunctional pruning, Bilbo said.

To test how the immune response affected memory, Bilbo's team placed all the rats in a novel environment and exposed them to a sound and a mild shock through their feet. A normal rat remembers the environment after one trial, freezing in place immediately when they enter the familiar setting a second time.

But rats exposed to infection, who tend to overproduce IL-1, stroll through the previously painful experience as if they've never seen it before, Bilbo said.

Even without experiencing the second immune challenge, the rats infected as youngsters also seem to show cognitive declines earlier than their normal control counterparts. "This is intriguingly similar to what you see in Alzheimer's. It's really kind of scary," Bilbo said.

"These findings could help us understand why some humans are more vulnerable than others to cognitive impairments from chronic infections, aging and neurodegenerative diseases such as Alzheimer's disease," said Raz Yirmiya, a professor of psychobiology at the Hebrew University of Jerusalem, who was not involved in the research. "This might also lead to new approaches toward diagnostic, preventive and therapeutic procedures for these conditions."

Any illness that triggers an immune response tends to slow a person's cognition down as their body enters a recovery mode, but these animals have some sort of permanent change in their immune response, Bilbo said. The newborn rats exposed to infections in these experiments are roughly equivalent to a third-trimester human fetus, but it would be too soon to say what parallels these findings may have in humans, she said.

Bilbo believes the early infection triggers a permanent change in gene expression, and is now looking at the role of microglial cells in addiction, and the interactions between maternal care and immune function.

This research was supported by an ARRA stimulus grant from the National Institutes of Health.

CITATION – "Microglia and Memory: Modulation by Early-Life Infection," Lauren L. Williamson, Paige W. Sholar, Rishi S. Mistry, Susan H. Smith and Staci D. Bilbo. Journal of Neuroscience, Oct. 26, 2011. Doi: 10.1523/JNEUROSCI.3688-11.2011

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>