Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound adds speed to visual perception

14.08.2008
The traditional view of individual brain areas involved in perception of different sensory stimuli—i.e., one brain region involved in hearing and another involved in seeing—has been thrown into doubt in recent years.

A new study published in the online open access journal BMC Neuroscience, shows that, in monkeys, the region involved in hearing can directly improve perception in the visual region, without the involvement of other structures to integrate the senses.

Integration of sensory stimuli has traditionally been thought of as hierarchical, involving brain areas that receive signals from distinct areas of the brain layer known as the cortex that recognise different stimuli. But the recent finding of nerve cells projecting from the auditory cortex (associated with the perception of sound) directly into the visual cortex (associated with sight), suggest that perception of one sense might affect that of another without the involvement of higher brain areas.

“Auditory or visual–auditory responses in the primary visual cortex are highly probable given the presence of direct projections from the primary auditory cortex”, explain P. Barone and colleagues from the Centre for Brain and Cognition Research, Toulouse, France. “We looked for modulation of the neuronal visual responses in the primary visual cortex by auditory stimuli in an awake monkey.”

The researchers recorded the neuronal responses with microelectrodes inserted directly into the primary visual cortex of a rhesus macaque. The monkey was then required to orient its gaze towards a visual stimulus. The time taken for the neurons in the visual cortex to respond to the stimulus, or latency, was recorded. Barone and colleagues then measured the latency when the visual stimulus was accompanied by a sound emanating from the same spot. When the visual signal was strong—i.e., high contrast—the auditory stimulus did not affect latency; however, if the visual signal was weaker—i.e., low contrast—latency decreased by 5-10%, suggesting that in some way the auditory stimulus speeds up the response to the visual stimulus.

“Our findings show that single neurons from one primary sensory cortex can integrate information from another sensory modality”, the researchers claim. They propose that the auditory cue is processed more quickly than the visual stimulus, and because the monkeys have learned to associate that sound and sight, the visual cortex is primed to perceive the weaker signal. “Our results argue against a strict hierarchical model of sensory integration in the brain and that integration of multiple senses should be added to the list of functions of the primary visual cortex.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>