Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound adds speed to visual perception

14.08.2008
The traditional view of individual brain areas involved in perception of different sensory stimuli—i.e., one brain region involved in hearing and another involved in seeing—has been thrown into doubt in recent years.

A new study published in the online open access journal BMC Neuroscience, shows that, in monkeys, the region involved in hearing can directly improve perception in the visual region, without the involvement of other structures to integrate the senses.

Integration of sensory stimuli has traditionally been thought of as hierarchical, involving brain areas that receive signals from distinct areas of the brain layer known as the cortex that recognise different stimuli. But the recent finding of nerve cells projecting from the auditory cortex (associated with the perception of sound) directly into the visual cortex (associated with sight), suggest that perception of one sense might affect that of another without the involvement of higher brain areas.

“Auditory or visual–auditory responses in the primary visual cortex are highly probable given the presence of direct projections from the primary auditory cortex”, explain P. Barone and colleagues from the Centre for Brain and Cognition Research, Toulouse, France. “We looked for modulation of the neuronal visual responses in the primary visual cortex by auditory stimuli in an awake monkey.”

The researchers recorded the neuronal responses with microelectrodes inserted directly into the primary visual cortex of a rhesus macaque. The monkey was then required to orient its gaze towards a visual stimulus. The time taken for the neurons in the visual cortex to respond to the stimulus, or latency, was recorded. Barone and colleagues then measured the latency when the visual stimulus was accompanied by a sound emanating from the same spot. When the visual signal was strong—i.e., high contrast—the auditory stimulus did not affect latency; however, if the visual signal was weaker—i.e., low contrast—latency decreased by 5-10%, suggesting that in some way the auditory stimulus speeds up the response to the visual stimulus.

“Our findings show that single neurons from one primary sensory cortex can integrate information from another sensory modality”, the researchers claim. They propose that the auditory cue is processed more quickly than the visual stimulus, and because the monkeys have learned to associate that sound and sight, the visual cortex is primed to perceive the weaker signal. “Our results argue against a strict hierarchical model of sensory integration in the brain and that integration of multiple senses should be added to the list of functions of the primary visual cortex.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>