Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sorting device for analyzing biological reactions puts the power of a lab in a researcher’s pocket

03.03.2010
Microfluidic technology increases efficiency, reduces costs, and could be a boon for synthetic biology

Fictional candy maker Willy Wonka called his whimsical device to sort good chocolate eggs from bad, an eggucator. Likewise, by determining what enzymes and compounds to keep and which to discard, scientists are aiming to find their own golden eggs: more potent drugs and cleaner sources of energy.

Toward that end, Harvard researchers and a team of international collaborators demonstrated a new microfluidic sorting device that rapidly analyzes millions of biological reactions. Smaller than an iPod Nano, the device analyzes reactions a 1,000-times faster and uses 10 million-fold less volumes of reagent than conventional state-of-the-art robotic methods.

The scientists anticipate that the invention could reduce screening costs by 1 million-fold and make directed evolution, a means of engineering tailored biological compounds, more commonplace in the lab.

"Our finding is not so much a scientific discovery, but the first demonstration of a new technology," says project leader Jeremy Agresti, a former research associate in the lab of co-author David Weitz, Mallinckrodt Professor of Physics and of Applied Physics in the Harvard School of Engineering and Applied Sciences (SEAS) and Department of Physics. "What limits new areas of research in biology and biotechnology is the ability to assay or to do experiments on many different variables in parallel at once."

The team's technology, first reported in the February 8th online Early Edition of the Proceedings of the National Academy of Sciences, bypasses conventional limitations through the use of drop-based microfluidics, squeezing tiny capsules of liquid through a series of intricate tubes, each narrower than a single human hair.

"Each microscopic drop can trap an individual cell and thus it becomes like a miniature test tube," explains Amy Rowat, a postdoctoral fellow at SEAS. "The drops are coated with a surfactant, or stabilization molecule, that prevents the drops from coalescing with each other and also prevents the contents from sticking to the wall of the drops."

To sort, the system removes inactive and unwanted compounds, dumping the drops into a "bad egg" bin, and guides the others into a "keep" container. Specifically, as the drops flow through the channels they eventually encounter a junction (a two-channel fork). Left alone, the drops will naturally flow towards the path of least fluidic resistance, or the waste channel.

The device identifies the desired drops by using a laser focused on the channel before the fork to read a drop's fluorescence level. The drops with greater intensity of fluorescence (those exhibiting the highest levels of activity) are pulled towards the keep channel by the application of an electrical force, a process known as dielectrophoresis.

"Our concept was to build a miniature laboratory for performing biological experiments quickly and efficiently," explains collaborator Adam Abate, a postdoctoral fellow in applied physics at SEAS. "To do this we needed to construct microfluidic versions of common bench-top tasks, such as isolating cells in a compartment, adding reagents, and sorting the good from the bad. The challenge was to do this with microscopic drops flowing past at thousands per second."

"The sorting process is remarkably efficient and fast. By shrinking down the reaction size to 10 picoliters of volumes, we increased the sorting speed by the same amount," adds Agresti. "In our demonstration with horseradish peroxidase, we evolved and improved an already efficient enzyme by sorting through 100 million variants and choosing the best among them."

In particular, the researchers were struck by the ability to increase the efficiency of an already efficient enzyme to near its theoretical maximum, the diffusion limit, where the enzyme can produce products as quickly as a new substrate can bump into it.

Using conventional means, the sorting process would have taken several years. Such a dramatic reduction of time could be a boon for the burgeoning field of synthetic biology. For example, a biofuels developer could use the device to screen populations of millions of organisms or metabolic pathways to find the most efficient producer of a chemical or fuel. Likewise, scientists could speed up the pace of drug development, determining the best chemical candidate compounds and then evolving them based upon desired properties.

"The high speed of our technique allows us to go through multiple cycles of mutation and screening in a very short time," says Agresti. "This is the way evolution works best. The more generations you can get through, the faster you can make progress."

Agresti, Rowat, and Abate's co-authors included Keunho Ahn from SEAS; Eugene Antipov and Alexander M. Klibanov, both from MIT; Jean-Christophe Baret and Andrew D. Griffiths, both from the Université de Strasbourg; and Manuel Marquez from YNano LLC.

The authors acknowledge the support by the Human Frontier Science Program; the National Science Foundation through the Harvard Materials Research Science and Engineering Center; the Centre National de la Recherche Scientifique; the Massachusetts Life Sciences Center; and the Agence National de la Recherche.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.seas.harvard.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>