Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sorted Building Blocks

18.03.2011
Poly(propylene carbonate) stereogradient

The properties of polymers—long chain molecules from which plastics are made—depend on the type of individual building blocks in them, as well as the order they are in and how they are arranged in space.

Although the order of the components can easily be controlled, control of their spatial arrangement, called stereochemistry, remains one of the biggest challenges in polymer chemistry. Kyoko Nozaki and a team from the University of Tokyo report in the journal Angewandte Chemie that they have made the first poly(propylene carbonate) with polymer chains built up in the form of a gradient of two stereochemically different propylene building blocks.

Poly(propylene carbonate) is used as a binding agent and as a component of biodegradable plastics. It is made from propylene oxide and carbon dioxide in a catalytic process. Propylene oxide contains three carbon atoms, two of which form a ring together with an oxygen atom. This ring opens during polymerization. Propylene oxide exists in two forms that are mirror images of each other; these are designated as the S and R stereoisomers.

Poly(propylene carbonate)s that are made primarily of one of the two forms or have both forms in an alternating pattern have been made before. Nozaki’s group has now been the first to synthesize both a stereoblock and a stereogradient. A stereoblock copolymer is a chain, half of which is made of the S form and the other half of the R form. In a stereogradient copolymer, the composition changes gradually from the S form to the R form.

Making a block copolymer is theoretically relatively easy because use of an asymmetric catalyst causes one of the two forms of building block to be used preferentially, so it is built into the polymer chains first; the less favorable form is incorporated afterward. In the case of poly(propylene carbonate), however, this process isn’t so trivial because once the favored form of the propylene oxide is converted to a polymer, the other form decomposes instead of polymerizing. The Japanese scientists found a special asymmetrical cobalt complex that allows nearly complete conversion to the polymer. Although the catalyst prefers the S form, it also ensures that it is more favorable for the R form to polymerize than to decompose.

The researchers experimented further with variations on the cobalt complex. A special ammonium side branch on a ligand brought success: It balances the degree of preference of the catalyst for the S form over the R form so that the R form begins to be incorporated into the polymer chain as the amount of the S form decreases. This allows the formation of the stereogradient copolymer. Interestingly, both of the new types of poly(propylene carbonate), stereoblock and stereogradient, are significantly more heat-tolerant than pure S or R polymers or mixtures of the two.

Author: Kyoko Nozaki, University of Tokyo (Japan), http://park.itc.u-tokyo.ac.jp/nozakilab/indexE.html

Title: Synthesis of Stereogradient Poly(propylene carbonate) by Stereo- and Enantioselective Copolymerization of Propylene Oxide with Carbon Dioxide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201007958

Kyoko Nozaki | Angewandte Chemie
Further information:
http://park.itc.u-tokyo.ac.jp/nozakilab/indexE.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>