Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soothing Cells, Peaceful Protein Could Hold Promise for Treating Autoimmune Uveitis

02.07.2014

Researchers at the National Eye Institute (NEI) have found a unique cell type that, in tests on mice, can protect against uveitis—a group of inflammatory diseases that affect the eye and can cause vision loss.

Uveitis occurs when immune cells invade the eye, causing inflammation and swelling. The NEI researchers found a unique immune cell population that suppresses eye inflammation and reduces the severity of uveitis by releasing a protein called interleukin-35 (IL-35). The discovery, published in Nature Medicine, could lead to the development of new drugs based on IL-35 and to cellular therapies for uveitis.


A healthy mouse retina (left) and distinctive folds in a mouse retina damaged by autoimmune uveitis (right).

Wang et al. Nature Medicine, April 2014

Corticosteroids and other drugs that have a general suppressing effect on the immune system are typically the first-line treatments for uveitis. But over time, these drugs can cause a number of side effects, including weight gain, stomach ulcers, diabetes, heart disease, cataract and glaucoma.

Biologics, which are drugs that are designed to target specific biological processes in the body, are another option. But currently available biologics were developed for a variety of diseases other than uveitis, and relatively little is known about the long-term benefits and risks of using them against uveitis.

"Usually, physicians use steroids and other current treatments sparingly, in order to avoid complications," said Charles Egwuagu, Ph.D., M.P.H., who is chief of the Molecular Immunology section in NEI’s Laboratory of Immunology. "There has been a big push to develop biologics that would be more specific and effective for uveitis."

Uveitis literally means inflammation of the uvea, which is a middle layer of the eye that includes the iris (the colored ring) and the choroid, a tissue filled with tiny blood vessels. Normally, blood flow within these vessels is tightly regulated, creating a barrier between the bloodstream and the delicate tissues of the eye. But in uveitis, immune cells in the blood creep out of the vessels and wreak havoc in the eye. They can damage not only the uvea, but also the retina and the optic nerve. (The retina is the light-sensitive tissue at the back of the eye, and the optic nerve connects the retina to the brain.)

Uveitis can be triggered by eye infections or by autoimmunity, a process in which an overly aggressive response by the immune system results in damage to the body’s own tissues. Autoimmune uveitis may occur as part of other autoimmune diseases such as juvenile rheumatoid arthritis, multiple sclerosis, Behçet’s disease, and systemic lupus erythematosus. It is estimated that autoimmune uveitis accounts for 10 percent of all visual disabilities in the United States.

Dr. Egwuagu and his team have been working to understand autoimmune uveitis and other such disorders by studying complex feedback loops that are built into the immune response and normally keep it from turning against the body. Among immune cells, T cells generally serve as mobile infantry units, attacking invaders at close range. Meanwhile, B cells serve as the artillery units, attacking with guided missiles known as antibodies. In smaller numbers, there are also regulatory T cells and B cells that act as peacemakers, quieting down their armed, hostile counterparts. In recent years, there has been growing interest in harnessing these regulatory immune cells to calm down autoimmune responses.

There has been particular interest in IL-35, a member of a family of proteins called cytokines, which help tune immune responses. IL-35 was first discovered in 2007. It is produced by regulatory T cells and acts as a “calm down” signal for other cells. It is actually a pair of separate smaller proteins intimately joined together, and has proven difficult to purify or manufacture. Dr. Egwuagu’s group is one of only two labs in the country that have been able to produce and study the complete protein, without using extra bits of protein called linkers to connect its two parts.

The researchers tested whether or not IL-35 could suppress autoimmune uveitis in a mouse model. To induce autoimmune uveitis in mice, they gave the mice injections of a retinal protein that appears to agitate immune cells in people with the condition. These mice developed damage to the uvea, retina, and optic nerve. But IL-35 injections given on the same day of disease induction helped prevent uveitis. When given up to 10 days after disease induction, IL-35 suppressed uveitis.

In other experiments done on laboratory-grown mouse cells, the researchers found that IL-35 protects against uveitis by changing the destiny of primitive B cells. Without IL-35, those cells typically become antibody-producing B cells. But IL-35 turns a fraction of those cells into regulatory B cells that produce more IL-35, creating a chain reaction of calm. The researchers found that IL-35 has the same effect on human B cells grown in the lab, suggesting it could have similar therapeutic effects in people as in mice.
Finally, the researchers found that they could reverse uveitis in mice with injections of the regulatory B cells that produce IL-35, instead of injecting the protein itself. Ultimately, using the cells as therapy may be better than using the protein, Dr. Egwuagu said.

"We suspect that IL-35 is likely to have unpredictable side effects," he said. But the B cells responsible for producing it may produce other substances that balance these effects. "If you can grow and select for these cells, you can probably calibrate the effects of IL-35," he said.

Much work remains to be done to see if people with autoimmune uveitis could benefit from IL-35 or the cells that produce it. Testing in other animal models and methods for ramping up production of IL-35 will be necessary. Dr. Egwuagu also plans to investigate whether some people with autoimmune uveitis have a reduction or defect in regulatory B cells. If so, they would likely benefit from treatment with IL-35 or the regulatory B cells that produce it, said Dr. Egwuagu. There is also interest among the broader research community in determining if these therapies might be useful against other autoimmune diseases or organ transplant rejection.

Reference: Wang RX et al. "Interleukin-35 induces regulatory B cells that suppress autoimmune disease." Nature Medicine, April 2014. DOI: 10.1038/nm.3554.

###

NEI leads the federal government's research on the visual system and eye diseases. NEI supports basic and clinical science programs that result in the development of sight-saving treatments. For more information, visit http://www.nei.nih.gov.

Jean Horrigan, Daniel Stimson | newswise

Further reports about: Cells Eye NIH Protein autoimmune damage diseases drugs effects immune injections regulatory

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>