Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Songs From The Sea: Deciphering Dolphin Language with Picture Words

05.01.2009
In an important breakthrough in deciphering dolphin language, researchers in Great Britain and the United States have imaged the first high definition imprints that dolphin sounds make in water.

The key to this technique is the CymaScope, a new instrument that reveals detailed structures within sounds, allowing their architecture to be studied pictorially.

Using high definition audio recordings of dolphins, the research team, headed by English acoustics engineer, John Stuart Reid, and Florida-based dolphin researcher, Jack Kassewitz, has been able to image, for the first time, the imprint that a dolphin sound makes in water. The resulting "CymaGlyphs," as they have been named, are reproducible patterns that are expected to form the basis of a lexicon of dolphin language, each pattern representing a dolphin 'picture word.'

Certain sounds made by dolphins have long been suspected to represent language but the complexity of the sounds has made their analysis difficult. Previous techniques, using the spectrograph, display cetacean (dolphins, whales and porpoises) sounds only as graphs of frequency and amplitude. The CymaScope captures actual sound vibrations imprinted in the dolphin's natural environment-water, revealing the intricate visual details of dolphin sounds for the first time.

Within the field of cetacean research, theory states that dolphins have evolved the ability to translate dimensional information from their echolocation sonic beam. The CymaScope has the ability to visualize dimensional structure within sound. CymaGlyph patterns may resemble what the creatures perceive from their own returning sound beams and from the sound beams of other dolphins.

Reid said that the technique has similarities to deciphering Egyptian hieroglyphs. "Jean-Francois Champollion and Thomas Young used the Rosetta Stone to discover key elements of the primer that allowed the Egyptian language to be deciphered. The CymaGlyphs produced on the CymaScope can be likened to the hieroglyphs of the Rosetta Stone. Now that dolphin chirps, click-trains and whistles can be converted into CymaGlyphs, we have an important tool for deciphering their meaning."

Kassewitz, of the Florida-based dolphin communication research project SpeakDolphin.com said, "There is strong evidence that dolphins are able to 'see' with sound, much like humans use ultrasound to see an unborn child in the mother's womb. The CymaScope provides our first glimpse into what the dolphins might be 'seeing' with their sounds."

The team has recognized that sound does not travel in waves, as is popularly believed, but in expanding holographic bubbles and beams. The holographic aspect stems from the physics theory that even a single molecule of air or water carries all the information that describes the qualities and intensity of a given sound. At frequencies audible to humans (20 Hertz to 20,000 Hertz) the sound-bubble form dominates; above 20,000 Hertz the shape of sound becomes increasingly beam shaped, similar to a lighthouse beam in appearance.

Reid explained their novel sound imaging technique: "Whenever sound bubbles or beams interact with a membrane, the sound vibrations imprint onto its surface and form a CymaGlyph, a repeatable pattern of energy. The CymaScope employs the surface tension of water as a membrane because water reacts quickly and is able to reveal intricate architectures within the sound form. These fine details can be captured on camera."

Kassewitz has planned a series of experiments to record the sounds of dolphins targeting a range of objects. Speaking from Key Largo, Florida, he said, "Dolphins are able to emit complex sounds far above the human range of hearing. Recent advances in high frequency recording techniques have made it possible for us to capture more detail in dolphin sounds than ever before. By recording dolphins as they echolocate on various objects, and also as they communicate with other dolphins about those objects, we will build a library of dolphin sounds, verifying that the same sound is always repeated for the same object. The CymaScope will be used to image the sounds so that each CymaGlyph will represent a dolphin 'picture word'. Our ultimate aim is to speak to dolphins with a basic vocabulary of dolphin sounds and to understand their responses. This is uncharted territory but it looks very promising."

Dr. Horace Dobbs, a leading authority on dolphin-assisted therapy, has joined the team as consultant. "I have long held the belief that the dolphin brain, comparable in size with our own, has specialized in processing auditory data in much the same way that the human brain has specialized in processing visual data. Nature tends not to evolve brain mass without a need, so we must ask ourselves what dolphins do with all that brain capacity. The answer appears to lie in the development of brain systems that require huge auditory processing power. There is growing evidence that dolphins can take a sonic 'snap shot' of an object and send it to other dolphins, using sound as the transmission medium. We an therefore hypothesize that the dolphin's primary method of communication is picture based. Thus, the picture-based imaging method, employed by Reid and Kassewitz, seems entirely plausible."

The CymaGlyphs of dolphin sounds fall into three broad categories, signature whistles, chirps and click trains. There is general agreement among cetacean biologists that signature whistles represent the means by which individual dolphins identify themselves while click trains are involved in echolocation. Chirps are thought to represent components of language. Reid explained the visual form of the various dolphin sounds, "The CymaGlyphs of signature whistles comprise regular concentric bands of energy that resemble aircraft radar screens while chirps are often flower-like in structure, resembling the CymaGlyphs of human vocalizations. Click trains have the most complex structures of all, featuring a combination of tightly packed concentric bands on the periphery with unique central features."

Regarding the possibility of speaking dolphin, Kassewitz said, "I believe that people around the world would love the opportunity to speak with a dolphin. And I feel certain that dolphins would love the chance to speak with us - if for no other reason than self-preservation. During my times in the water with dolphins, there have been several occasions when they seemed to be very determined to communicate with me. We are getting closer to making that possible."

John Stuart Reid | alfa
Further information:
http://www.speakdolphin.com
http://www.cymascope.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>