Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Songbird Genome Sings Of The Communicating Brain

01.04.2010
The Australian zebra finch, Taeniopygia guttata, weighs less than half an ounce, mates for life and, unlike most vocalizing animals, learns its songs from its elders. A new analysis of its genome, the first of a songbird, is providing tantalizing clues to the mechanisms and evolution of vocal communication.

Researchers at Washington University in St. Louis, the University of Illinois at Urbana-Champaign, Uppsala University, UCLA and more than 20 other institutions collaborated on the analysis, which appears in the journal Nature.

Recognizing the unique relevance of songbirds to human biology and medicine, the National Human Genome Research Institute provided the main support for the sequencing effort.

Much like humans learn speech, songbirds learn their vocalizations – an ability rare in the animal kingdom. Zebra finches have been domesticated and are easy to rear, making them an accessible subject for scientific study, said David Clayton, a professor of neuroscience and cell and developmental biology at the University of Illinois and leader of the group that proposed and organized the genome sequencing effort.

“There is a real diversity of investigators doing research on the zebra finch,” said Clayton, who is also an affiliate of the Institute for Genomic Biology at Illinois. “It is a unique animal model for things like sexual differentiation in the brain, sensitivity to the environment, local communication, speech, learning, steroid responses and social behavior.”

One striking outcome of the genome analysis is the discovery that song communication activates large and complex gene regulatory networks in the brain. A 2009 study conducted in Clayton’s lab showed that hundreds of genes are switched on or off in the zebra finch brain quickly as the bird learns the sound of a new song. Now, using the new genome sequence, the researchers observe that many of these song-responsive genes do not encode proteins but give rise to “non-coding” RNAs. Among the genes that are suppressed immediately after a zebra finch hears a new song, two-thirds are non-coding RNAs. Non-coding RNAs are believed to interact with protein-coding messenger RNAs (mRNAs) to regulate their stability, intracellular location and translation into protein.

“When we talk about the genes in a genome, many people still think exclusively in terms of protein-coding genes,” Clayton said. “We’re not the first to recognize that these non-coding RNAs are important. They’ve been studied a lot in the context of embryonic development, for example. But certainly this is a surprising observation that these things are also active in the moment-to-moment operation of the brain.”

As expected, the finch genome shares certain characteristics with that of the chicken, the only other bird genome sequenced to date. But a comparison of the two also reveals some striking differences. Some families of genes have expanded in the zebra finch, for example, and individual chromosome rearrangements have occurred since the two lineages diverged about 100 million years ago.

The zebra finch genome also is unusual in that it does not appear to fully balance the “dosage” of genes found on the sex chromosome, Z, between males and females. Males have two copies of the Z chromosome, while females carry one Z and one W chromosome. As a result, most genes found on the Z chromosome are expressed at higher levels in male finches than in females. This could explain some of the behavioral differences seen between male and female finches, the researchers suggest.

The analysis also found that some genes related to birdsong have undergone rapid evolution in the finch, suggesting that over evolutionary time these genes contributed to songbird survival and perhaps helped songbirds take over new ecological niches.

The new findings are relevant to an understanding of human vocal communication, Clayton said.

“There is a functional developmental parallel between the way a bird learns to sing and a human learns to speak,” he said. “The avian brain is quite different in superficial detail from the mammalian brain or the human brain, but some striking parallels have emerged.”

The organizing committee of the zebra finch genome sequencing project also included Research Professor of Genetics Wesley C. Warren of Washington University School of Medicine; Professor in Evolutionary Biology Hans Ellegren of Uppsala University; and Distinguished Professor of Integrative Biology and Physiology Arthur P. Arnold, of UCLA.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>