Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving streptide from structure to biosynthesis

18.05.2015

Bacteria speak to one another using peptide signals in a soundless language known as quorum sensing. In a step towards translating bacterial communications, researchers at Princeton University have revealed the structure and biosynthesis of streptide, a peptide involved in the quorum sensing system common to many streptococci.

"It's extremely rare for one research group to do both natural products discovery and mechanistic enzymology," said Leah Bushin, a member of the Seyedsayamdost lab and co-first author on the article published on April 20 in Nature Chemistry. Bushin worked on elucidating the structure of streptide as part of her undergraduate senior thesis project and will enter Princeton Chemistry's graduate program in the fall.


In a step towards translating bacterial communications, researchers at Princeton University have revealed the structure and biosynthesis of streptide, a peptide involved in the quorum sensing system common to many streptococci.

Credit: Seyedsayamdost lab

To explore how bacteria communicate, first she had to grow them, a challenging process in which oxygen had to be rigorously excluded. Next she isolated the streptide and analyzed it using two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy, a technique that allows scientists to deduce the connections between atoms in a molecule by pulsing their nuclei with powerful magnets to pulse atomic nuclei.

The experiments revealed that streptide contained an unprecedented crosslink between two unactivated carbons on lysine and tryptophan, constituting a new class of macrocyclic peptides. "We didn't think it would be as cool as a carbon-carbon bond between two amino acid side chains, so it was definitely a surprise." said Bushin.

To figure out how this novel bond was being formed, the researchers took a closer look at the gene cluster that produced streptide. Within the gene cluster, they suspected a radical S-adenosyl methionine (SAM) enzyme, which they dubbed StrB, could be responsible for this unusual modification.

"Radical SAM enzymes catalyze absolutely amazing chemistries," said Kelsey Schramma, a graduate student in the Seyedsayamdost lab and co-first author on the article. "There are over 48,000 radical SAM enzymes, but only about 50 have been characterized and just a dozen or so studied in detail," she said.

To probe the enzyme's role in making streptide, the researchers created a mutated version of the bacteria lacking the strB gene. The mutant failed to produce streptide, confirming that the StrB enzyme was significant and warranted further study.

Schramma determined that in order to function properly, the StrB enzyme required some key components: the pre-crosslinked substrate, which she prepared synthetically, cofactor SAM, reductant, and two iron-sulfur (Fe-S) clusters carefully assembled in the protein interior. The team then showed that one of the FeS clusters reductively activated one molecule of SAM, kicking off a chain of one-electron (radical) reactions that gave rise to the novel carbon-carbon bond.

"The synergy between Leah and Kelsey was great," said Mohammad Seyedsayamdost, an assistant professor of chemistry at Princeton who led the research team. "They expressed interest in complementary aspects of the project and the whole ended up being greater than the sum of its parts," he said.

Their efforts included not only chemical and biological approaches, but also theoretical computational studies. While the 2D NMR experiments revealed the flat structure of streptide, its three-dimensional conformation was still unknown.

"Since the crosslink had never been reported, we had to code the modification into the program, which took a bit of creativity," Bushin said. After corresponding with the software creator, they were able to confidently assign a key residue in the macrocycle with the S-configuration.

Future work will target streptide's biological function -- its meaning in the bacterial language -- as well as confirming its production by other streptococcal bacteria strains.

"What we have revealed is a new and unusual mechanism that nature uses to synthesize macrocyclic peptides. There is a lot of novel chemistry to be discovered by interrogating bacterial secondary metabolite biosynthetic pathways," Seyedsayamdost said.

###

Read the full article here:

Schramma, K. R.; Bushin, L. B.; Seyedsayamdost, M. R. "Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink." Nature Chemistry, 2015, 7, 431.

This work was supported by the National Institutes of Health (grant no. GM098299), and by Princeton University start-up funds.

Media Contact

Tien Nguyen
tienn@princeton.edu
609-258-6523

 @Princeton

http://www.princeton.edu 

Tien Nguyen | EurekAlert!

Further reports about: SAM amino acid bacteria bacterial biological function biosynthesis modification nuclei peptides

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>