Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving stem cell mysteries

29.10.2012
The ability of embryonic stem cells to differentiate into different types of cells with different functions is regulated and maintained by a complex series of chemical interactions, which are not well understood.

Learning more about this process could prove useful for stem cell-based therapies down the road. New research from a team led by Carnegie's Yixian Zheng zeroes in on the process by which stem cells maintain their proper undifferentiated state. Their results are published in Cell October 26.

Embryonic stem cells go through a process called self-renewal, wherein they undergo multiple cycles of division while not differentiating into any other type of cells. This process is dependent on three protein networks, which guide both self-renewal and eventual differentiation. But the integration of these three networks has remained a mystery.

Using a combination of genetic, protein-oriented and physiological approaches involving mouse embryonic stem cells, the team—which also included current and former Carnegie scientists Junling Jia, Xiaobin Zheng, Junqi Zhang, Anying Zhang, and Hao Jiang—uncovered a mechanism that integrates all three networks involved in embryonic stem cell self-renewal and provide a critical missing link to understanding this process.

The key is a protein called Utf1. It serves three important roles. First, it balances between activating and deactivating the necessary genes to direct the cell toward differentiation. At the same time, it acts on messenger RNA that is the transcription product of the genes when they're activated by tagging it for degradation, rather than allowing it to continue to serve its cellular function. Lastly, it blocks a genetic feedback loop that normally inhibits cellular proliferation, allowing it to occur in the rapid nature characteristic of embryonic stem cells.

"We are slowly but surely growing to understand the physiology of embryonic stem cells," Zheng said. "It is crucial that we continue to carrying out basic research on how these cells function."

Non-Carnegie co-authors on the paper include Gangquing Hu, Kairong Cui, Chengyu Liu and Keji Zhao of the National Institutes of Health; and John Yates III and Bingwen Lu of the Scripps Research Institute, the latter of whom is now at Pfizer.

This research was supported by NIH, NHLBI intramural research, HHMI, and the Cystic Fibrosis Foundation Therapeutics Inc.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Yixian Zheng | EurekAlert!
Further information:
http://www.ciwemb.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>