Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why solitary reptiles lay eggs in communal nests

Reptiles are not known to be the most social of creatures. But when it comes to laying eggs, female reptiles can be remarkably communal, often laying their eggs in the nests of other females. New research in the September issue of The Quarterly Review of Biology suggests that this curiously out-of-character behavior is far more common in reptiles than was previously thought.

Dr. J. Sean Doody (The Australian National University) and colleagues, Drs. Steve Freedberg and J. Scott Keogh, performed an exhaustive review of literature on reptile egg-laying. They found that communal nesting has been reported in 255 lizard species as well as many species of snakes and alligators. The behavior was also documented in 136 amphibian species.

"[O]ur analysis indicates that communal egg-laying is much more common than generally recognized," the authors write.

Despite its prevalence, why reptiles share nests remains a mystery. The phenomenon is easier to explain in birds, many species of which also share nests. Baby birds generally require plenty of parental care after they are born. By nesting together, adult birds can share the burden of feeding and protecting the young—giving a plausible advantage to communal nesting.

Reptiles, on the other hand, generally abandon their eggs before they hatch, so sharing parental duties cannot be the reason reptiles share nests. Many researchers have written off communal nesting in reptiles as a by-product of habitat. In many reptile habitats, good nesting spots are scarce. It is possible, therefore, that females share nests because there is simply nowhere else to nest. As such, communal nesting would have no real evolutionary value on its own; it would be something that simply occurs out of necessity.

But Doody and his colleagues doubt the by-product hypothesis. They cite numerous reports of reptiles nesting communally even when good nesting sites are abundant. Doody believes shared nesting may provide an evolutionary advantage to reptiles after all—despite their lack of parental care.

Building a nest can be hard work for reptiles. Some female lizards, for example, may spend days digging a hole deep enough to deposit eggs. During those days, she is not doing other important things such as finding food. She is also more vulnerable to predators. Females can avoid these costs by simply laying eggs in a nest that someone else has gone to the trouble to build.

But sharing nests can also have a downside. When the eggs hatch, babies are immediately forced to compete with each other for resources. In addition, closely packed egg groups have an increased risk of disease transmission.

Using a mathematical model, Doody and his colleagues show that if the benefits to the mother outweigh the costs to the offspring, communal nesting makes evolutionary sense for reptiles. But when the costs of nesting together outweigh the benefits, we should expect to see solitary nests. This would explain why many reptile species display both solitary and communal nesting strategies.

More study needs to be done to confirm the model, Doody says, but it is a starting point for explaining why communal nesting is so common in otherwise solitary reptiles.

J. Sean Doody, "Communal Egg-laying In Reptiles And Amphibians: Evolutionary Patterns And Hypotheses." The Quarterly Review of Biology 84:3 (September 2009)

The premier review journal in biology since 1926, The Quarterly Review of Biology publishes articles in all areas of biology but with a traditional emphasis on evolution, ecology, and organismal biology.

Kevin Stacey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>