Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid Spheres

30.09.2010
Nanospheres made of aromatic amino acids: The most rigid organic nanostructures to date

Organic nanostructures are key elements of nanotechnology because these building blocks can be made with tailored chemical properties. Their disadvantage has been that their mechanical properties have so far been significantly inferior to those of metallic nanostructures.

Ehud Gazit, Itay Rousso, and a team from the Tel Aviv University, the Weizmann Institute of Science and the Ben-Gurion University of the Negev (Israel) have now introduced organic nanospheres that are as rigid as metal. As the scientists report in the journal Angewandte Chemie, they are interesting components for ultrarigid biocomposite materials.

Nanoscale biological structures often exhibit unique mechanical properties; for example spider silk is 25 times as strong as steel by weight. The most rigid synthetic organic materials known to date are aramids, such as Kevlar. Their secret is a special spatial arrangement of their aromatic ring systems and the network of interactions between their planar amide bonds. The new nanospheres are based on a similar construction principle. However, unlike the large polymeric chains, they are formed in a self-organization process from very simple molecules based on aromatic dipeptides of the amino acid phenylalanine.

Using an atomic force microscope, the scientists examined the mechanical properties of their nanospheres. This device uses a nanotip (cantilever), a tiny flexible lever arm with a very fine tip at the end. When this tip is pressed against a sample, the deflection of the lever indicates whether the tip of the needle can press into the sample object and how far in it can go. A metal needle was not able to make any impression on the nanospheres; only a needle made of diamond was able to do it. The researchers used these measurements to calculate the elasticity modulus (Young’s modulus) for the nanospheres. This value is a measure of the stiffness of a material. The larger the value, the more resistance a material has to its deformation. By using a high-resolution scanning electron microscope equipped with a nanomanipulator, it was possible to directly observe the deformation of the spheres.

For the nanospheres, the team measured a remarkably high elasticity modulus (275 GPa), which is higher than many metals and similar to the values found for steel. This makes these nanostructures the stiffest organic molecules to date; they may even eclipse aramids. In addition to having outstanding mechanical properties, the nanospheres are also transparent. This makes them ideal elements for the reinforcement of ultrarigid biocomposite materials, such as reinforced plastics for implants or materials for tooth replacement, aerospace, and other applications that require inexpensive, lightweight materials with high stiffness and unusual stability.

Author: Ehud Gazit, Tel Aviv University (Israel), http://www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

Title: Self-Assembled Organic Nanostructures with Metallic-Like Stiffness

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201002037

Ehud Gazit | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html
http://dx.doi.org/10.1002/anie.201002037

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>