Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Research for the Renewable Energy Revolution

02.04.2012
The Free State of Bavaria is investing several million euros in the exploration of innovative concepts for the conversion of solar energy into electricity and non-fossil fuels. The funds flow into a joint project of five Bavarian universities.

With the supplementary budget of 2011, the Free State of Bavaria gets involved in the research on innovative concepts for the conversion of solar energy into electricity and non-fossil fuels. The Bavarian parliament has approved an initial six million euros for this purpose.

The plan is to establish a major joint research project of five years' duration with a total financing volume of about 50 million euros. The supplementary funds are invested – as a fundamental contribution to the renewable energy revolution in Bavaria – in a joint project of the Universities of Bayreuth, Erlangen-Nuremberg and Würzburg, and the Technical University and the Ludwig Maximilian University of Munich.

In the foreseeable future, humans will exhaust the supply of petroleum, natural gas and other fossil fuels. Further energy sources, such as sunlight, can not yet be used efficiently enough. Thus, great efforts are still required in order to secure the energy supply of the future. This is the task undertaken by chemists and physicists of five Bavarian universities joined together in the new research network "Solar Technologies Go Hybrid", which is funded by the Free State of Bavaria.

Firstly, the scientists focus their research on photovoltaics, i.e. the conversion of solar energy into electric current. Secondly, they are going to advance techniques with which solar energy can be stored as chemical energy. An example of this is the splitting of water into oxygen and energy-rich hydrogen fuel – in an environmentally friendly process based on the idea of photosynthesis in plants.

Students benefit from the new network

These research topics are planned to be more extensively covered in teaching at the five participating universities so that the students benefit from the new network. "This is because only a modern and qualified education makes sure that the young academics indispensable for a successful energy revolution will be available in future to the research and development laboratories of German companies," explains Professor Jochen Feldmann of the Ludwig Maximilian University of Munich, who initiated the project.

Network of key labs at recognized centers

For the project, the five universities are setting up well-equipped laboratories, the so-called key labs. These are integrated into existing research centers of international reputation. The new laboratories will supplement each other with their research focus and will form a close network. In this way, it is possible – as a special advantage of the investment – to initiate further innovative top-level research projects within the network of participating locations.

In the North of Bavaria, the research focus is on organic materials: In Bayreuth, research activities center around polymers while in Würzburg small molecules that combine into larger functional units constitute the main subject of interest. In Erlangen, researchers investigate nanotubes and other materials consisting of carbon. Finally, the two Munich Universities conduct research on inorganic materials and hybrid organic-inorganic nanosystems.
Funds for the expansion of infrastructure

A major part of the money shall first be used for the expansion of infrastructure. All participating locations receive funds to set up measuring stations in their laboratories, where innovative materials and energy conversion concepts can be studied. About half of the funding amount is to be used for the construction of new buildings in Munich and Würzburg.

Würzburg: Center for Nanosystems Chemistry

The Würzburg key lab will be set up at the Center for Nanosystems Chemistry. The center was founded in 2010 on the initiative of the chemist Professor Frank Würthner. Among other things, his study group is concerned with the targeted arrangement of small organic molecules into larger structures, which can then absorb sunlight and transfer the absorbed energy to electrodes, where the conversion into electric current takes place.

A further objective of Würthner's research is the development of artificial chloroplasts, which use solar energy for the production of fuel, mimicking the processes in a plant cell. The chemist Professor Christoph Lambert and the physicians Professor Tobias Brixner and Professor Vladimir Dyakonov are also significantly involved in the project. Artificial photosynthesis might help us in future to reduce the carbon dioxide concentration in the atmosphere while obtaining energy-rich materials, such as sugar, starch and methane gas.

New building planned at the Chemistry Center
Over the whole duration of the "Solar Technologies Go Hybrid" project, the Würzburg location is to receive a total of about twelve million euros in funds. About seven million euros of these funds are earmarked for the construction of a new building, which is to be built in the vicinity of the Chemistry Center at the Hubland Campus in the years between 2013 and 2016. The residual funds shall be about equally distributed for the procurement of equipment and for the employment of academic staff.

Contact person

Prof. Dr. Frank Würthner, Institute for Organic Chemistry of the University of Würzburg, T +49 (0)931 31-85340, wuerthner@chemie.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.nanosystems-chemistry.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>