Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Research for the Renewable Energy Revolution

02.04.2012
The Free State of Bavaria is investing several million euros in the exploration of innovative concepts for the conversion of solar energy into electricity and non-fossil fuels. The funds flow into a joint project of five Bavarian universities.

With the supplementary budget of 2011, the Free State of Bavaria gets involved in the research on innovative concepts for the conversion of solar energy into electricity and non-fossil fuels. The Bavarian parliament has approved an initial six million euros for this purpose.

The plan is to establish a major joint research project of five years' duration with a total financing volume of about 50 million euros. The supplementary funds are invested – as a fundamental contribution to the renewable energy revolution in Bavaria – in a joint project of the Universities of Bayreuth, Erlangen-Nuremberg and Würzburg, and the Technical University and the Ludwig Maximilian University of Munich.

In the foreseeable future, humans will exhaust the supply of petroleum, natural gas and other fossil fuels. Further energy sources, such as sunlight, can not yet be used efficiently enough. Thus, great efforts are still required in order to secure the energy supply of the future. This is the task undertaken by chemists and physicists of five Bavarian universities joined together in the new research network "Solar Technologies Go Hybrid", which is funded by the Free State of Bavaria.

Firstly, the scientists focus their research on photovoltaics, i.e. the conversion of solar energy into electric current. Secondly, they are going to advance techniques with which solar energy can be stored as chemical energy. An example of this is the splitting of water into oxygen and energy-rich hydrogen fuel – in an environmentally friendly process based on the idea of photosynthesis in plants.

Students benefit from the new network

These research topics are planned to be more extensively covered in teaching at the five participating universities so that the students benefit from the new network. "This is because only a modern and qualified education makes sure that the young academics indispensable for a successful energy revolution will be available in future to the research and development laboratories of German companies," explains Professor Jochen Feldmann of the Ludwig Maximilian University of Munich, who initiated the project.

Network of key labs at recognized centers

For the project, the five universities are setting up well-equipped laboratories, the so-called key labs. These are integrated into existing research centers of international reputation. The new laboratories will supplement each other with their research focus and will form a close network. In this way, it is possible – as a special advantage of the investment – to initiate further innovative top-level research projects within the network of participating locations.

In the North of Bavaria, the research focus is on organic materials: In Bayreuth, research activities center around polymers while in Würzburg small molecules that combine into larger functional units constitute the main subject of interest. In Erlangen, researchers investigate nanotubes and other materials consisting of carbon. Finally, the two Munich Universities conduct research on inorganic materials and hybrid organic-inorganic nanosystems.
Funds for the expansion of infrastructure

A major part of the money shall first be used for the expansion of infrastructure. All participating locations receive funds to set up measuring stations in their laboratories, where innovative materials and energy conversion concepts can be studied. About half of the funding amount is to be used for the construction of new buildings in Munich and Würzburg.

Würzburg: Center for Nanosystems Chemistry

The Würzburg key lab will be set up at the Center for Nanosystems Chemistry. The center was founded in 2010 on the initiative of the chemist Professor Frank Würthner. Among other things, his study group is concerned with the targeted arrangement of small organic molecules into larger structures, which can then absorb sunlight and transfer the absorbed energy to electrodes, where the conversion into electric current takes place.

A further objective of Würthner's research is the development of artificial chloroplasts, which use solar energy for the production of fuel, mimicking the processes in a plant cell. The chemist Professor Christoph Lambert and the physicians Professor Tobias Brixner and Professor Vladimir Dyakonov are also significantly involved in the project. Artificial photosynthesis might help us in future to reduce the carbon dioxide concentration in the atmosphere while obtaining energy-rich materials, such as sugar, starch and methane gas.

New building planned at the Chemistry Center
Over the whole duration of the "Solar Technologies Go Hybrid" project, the Würzburg location is to receive a total of about twelve million euros in funds. About seven million euros of these funds are earmarked for the construction of a new building, which is to be built in the vicinity of the Chemistry Center at the Hubland Campus in the years between 2013 and 2016. The residual funds shall be about equally distributed for the procurement of equipment and for the employment of academic staff.

Contact person

Prof. Dr. Frank Würthner, Institute for Organic Chemistry of the University of Würzburg, T +49 (0)931 31-85340, wuerthner@chemie.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.nanosystems-chemistry.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>