Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First uses of new solar energy technology: Killing germs on medical, dental instruments

09.09.2013
A revolutionary new solar energy technology that turns water into steam without boiling the entire container of water has become the basis for new devices to sanitize medical and dental instruments and human waste in developing countries, scientists said here today.

Prototypes of the devices, which need no electricity or fuel, were the topic of one of the keynote addresses at the opening of the 246th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting, which features almost 7,000 reports on new advances in science and other topics, continues through Thursday in the Indiana Convention Center and downtown hotels.

Naomi Halas, D.Sc., pointed out that almost 2 billion people live in areas of the world without a regular supply of electricity. That electricity is key to using machines called autoclaves, which produce scorching-hot steam to sterilize medical and dental instruments. Without that basic machine, doctors must rely on chemicals, which can be costly and difficult to transport, to prevent the spread of germs and disease from medical and dental instruments.

"We have developed a solution, our solar steam technology," Halas said. She is with Rice University. "It is completely off-grid, uses sunlight as the energy source, is not that large, kills disease-causing microbes effectively and relatively quickly and is easy to operate. This is an incredibly promising technology."

Halas and colleagues have prototypes of two solar steam machines. One is the autoclave for sterilizing medical and dental instruments. The second is an autoclave for disinfecting human and animal wastes, which are another major source of disease transmission in developing countries and other resource-limited areas. The technology could be expanded to provide steam for direct use in purifying dirty or salty water for drinking and cooking — with the solar-generated steam simply allowed to condense into pure distilled water. Possibilities also exist for adapting the technology to produce steam to spin small electric turbines to generate electricity.

Their tests showed that the prototype autoclaves produced steam at temperatures ranging from 239 to 270 degrees Fahrenheit. Steam production adequate for sterilization began within about 5 minutes. It continued for periods of time long enough to sterilize liquid and solid materials placed inside the device, consistent with U.S. Food and Drug Administration sterilization guidelines. The heat and pressure produced by the steam was great enough to kill the most heat-resistant living microbes, and also viruses and the tough spores that microbes form to survive hostile environmental conditions.

The autoclaves are the first practical applications of a new solar energy technology described earlier in 2012 in ACS Nano, one of the ACS' more than 40 peer-reviewed scientific journals. Metallic nanoparticles — bits of material so small that hundreds would fit inside the period at the end of this sentence — go into a container of water. Sunlight focused into the water quickly heats the nanoparticles, which scientists are terming "nanoheaters." A layer of steam forms on the nanoheaters and buoys them up to the water's surface. They release the steam and sink back down into the water to repeat the process.

"Nanoheaters generate steam at a remarkably high efficiency," Halas said. "More than 80 percent of the energy they absorb from sunlight goes into production of steam. In the conventional production of steam, you would have to heat the entire container of water until it boils, with the bubbles rising to the top to release steam. With nanoheaters, less than 20 percent of the energy heats the neighboring liquid."

The prototype autoclaves consist of a dish-like mirror that focuses sunlight into a container of water with the nanoheaters.

A video on the solar heater technology is available here.

Halas recently formed a company that is working on moving the devices from the prototype stage to commercial products. She and her collaborators are seeking ways to make them more rugged and at a more reasonable cost. They are also exploring even more applications for the technology.

A press conference on this topic will be held Sunday, Sept. 8, at 1 p.m. in the ACS Press Center, Room 211, in the Indiana Convention Center. Reporters can attend in person or access live audio and video of the event and ask questions at http://www.ustream.tv/channel/acslive.

Halas acknowledged funding from the Bill and Melinda Gates Foundation.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>